In situ neutron diffraction revealing the achievement of excellent combination of strength and ductility in metastable austenitic steel by grain refinement

材料科学 奥氏体 冶金 粒度 流动应力 变形(气象学) 极限抗拉强度 马氏体 无扩散变换 位错 可塑性 变形机理 中子衍射 应变率 复合材料 微观结构 结晶学 晶体结构 化学
作者
Wenqi Mao,Wu Gong,Stefanus Harjo,Shigenori Morooka,Si Gao,Takuro Kawasaki,Nobuhiro Tsuji
出处
期刊:Journal of Materials Science & Technology [Elsevier BV]
标识
DOI:10.1016/j.jmst.2023.07.036
摘要

The yield stress of Fe-24Ni-0.3C (wt.%) metastable austenitic steel increased 3.5 times (158 → 551 MPa) when the average grain size decreased from 35 μm (coarse-grained [CG]) to 0.5 μm (ultrafine-grained [UFG]), whereas the tensile elongation was kept large (0.87 → 0.82). In situ neutron diffraction measurements of the CG and UFG Fe-24Ni-0.3C steels were performed during tensile deformation at room temperature to quantitatively elucidate the influence of grain size on the mechanical properties and deformation mechanisms. The initial stages of plastic deformation in the CG and UFG specimens were dominated by dislocation slip, with deformation-induced martensitic transformation (DIMT) also occurring in the later stage of deformation. Results show that grain refinement increases the initiation stress of DIMT largely and suppresses the rate of DIMT concerning the strain, which is attributed to the following effects. (i) Grain refinement increased the stabilization of austenite and considerably delayed the initiation of DIMT in the <111>//LD (LD: loading direction) austenite grains, which were the most stable grains for DIMT. As a result, most of the <111>//LD austenite grains in the UFG specimen failed to transform into martensite. (ii) Grain refinement also suppressed the autocatalytic effect of the martensitic transformation. Nevertheless, the DIMT with the low transformation rate in the UFG specimen was more efficient in increasing the flow stress and more appropriate to maintain uniform deformation than that in the CG specimen during deformation. The above phenomena mutually contributed to the excellent combination of strength and ductility of the UFG metastable austenitic steel.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
田様应助飞翔的翅膀采纳,获得10
1秒前
王天天完成签到 ,获得积分10
1秒前
Micro_A应助无问采纳,获得10
2秒前
meng发布了新的文献求助10
3秒前
3秒前
檬小洋完成签到,获得积分10
3秒前
社会主义接班人完成签到 ,获得积分10
4秒前
zmy关注了科研通微信公众号
6秒前
7秒前
研究啥发布了新的文献求助10
8秒前
共享精神应助blueberry采纳,获得10
9秒前
Owen应助fl采纳,获得10
9秒前
12秒前
pluto应助科研通管家采纳,获得20
14秒前
SciGPT应助科研通管家采纳,获得10
14秒前
852应助科研通管家采纳,获得100
14秒前
丘比特应助科研通管家采纳,获得10
14秒前
我是老大应助科研通管家采纳,获得10
14秒前
CodeCraft应助科研通管家采纳,获得10
14秒前
唯为应助科研通管家采纳,获得10
14秒前
顾矜应助科研通管家采纳,获得10
14秒前
情怀应助科研通管家采纳,获得10
15秒前
wangrblzu应助科研通管家采纳,获得10
15秒前
酷波er应助科研通管家采纳,获得10
15秒前
CodeCraft应助科研通管家采纳,获得10
15秒前
pluto应助科研通管家采纳,获得20
15秒前
所所应助科研通管家采纳,获得10
15秒前
15秒前
15秒前
研友_Ze0vBn发布了新的文献求助10
16秒前
迷人发布了新的文献求助10
16秒前
16秒前
VDC应助无问采纳,获得30
17秒前
凝雁完成签到,获得积分10
18秒前
xiangwang发布了新的文献求助30
20秒前
gqfang完成签到,获得积分10
21秒前
海意完成签到,获得积分10
21秒前
丰富的不惜完成签到,获得积分10
21秒前
blueberry发布了新的文献求助10
22秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Izeltabart tapatansine - AdisInsight 800
Maneuvering of a Damaged Navy Combatant 650
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3774483
求助须知:如何正确求助?哪些是违规求助? 3320167
关于积分的说明 10198926
捐赠科研通 3034840
什么是DOI,文献DOI怎么找? 1665233
邀请新用户注册赠送积分活动 796719
科研通“疑难数据库(出版商)”最低求助积分说明 757558