In situ neutron diffraction revealing the achievement of excellent combination of strength and ductility in metastable austenitic steel by grain refinement

材料科学 奥氏体 冶金 粒度 流动应力 变形(气象学) 极限抗拉强度 马氏体 无扩散变换 位错 可塑性 变形机理 中子衍射 应变率 复合材料 微观结构 结晶学 晶体结构 化学
作者
Wenqi Mao,Wu Gong,Stefanus Harjo,Shigenori Morooka,Si Gao,Takuro Kawasaki,Nobuhiro Tsuji
出处
期刊:Journal of Materials Science & Technology [Elsevier]
标识
DOI:10.1016/j.jmst.2023.07.036
摘要

The yield stress of Fe-24Ni-0.3C (wt.%) metastable austenitic steel increased 3.5 times (158 → 551 MPa) when the average grain size decreased from 35 μm (coarse-grained [CG]) to 0.5 μm (ultrafine-grained [UFG]), whereas the tensile elongation was kept large (0.87 → 0.82). In situ neutron diffraction measurements of the CG and UFG Fe-24Ni-0.3C steels were performed during tensile deformation at room temperature to quantitatively elucidate the influence of grain size on the mechanical properties and deformation mechanisms. The initial stages of plastic deformation in the CG and UFG specimens were dominated by dislocation slip, with deformation-induced martensitic transformation (DIMT) also occurring in the later stage of deformation. Results show that grain refinement increases the initiation stress of DIMT largely and suppresses the rate of DIMT concerning the strain, which is attributed to the following effects. (i) Grain refinement increased the stabilization of austenite and considerably delayed the initiation of DIMT in the <111>//LD (LD: loading direction) austenite grains, which were the most stable grains for DIMT. As a result, most of the <111>//LD austenite grains in the UFG specimen failed to transform into martensite. (ii) Grain refinement also suppressed the autocatalytic effect of the martensitic transformation. Nevertheless, the DIMT with the low transformation rate in the UFG specimen was more efficient in increasing the flow stress and more appropriate to maintain uniform deformation than that in the CG specimen during deformation. The above phenomena mutually contributed to the excellent combination of strength and ductility of the UFG metastable austenitic steel.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
踏实的酸奶完成签到,获得积分10
1秒前
艾斯完成签到 ,获得积分10
1秒前
善学以致用应助zhouyms采纳,获得10
2秒前
勤劳冰安应助shineedou采纳,获得10
3秒前
星星完成签到,获得积分10
5秒前
小白给wxxz的求助进行了留言
5秒前
空山完成签到,获得积分10
6秒前
7秒前
9秒前
研友_VZG7GZ应助科研通管家采纳,获得10
10秒前
xzy998应助科研通管家采纳,获得10
10秒前
xzy998应助科研通管家采纳,获得10
10秒前
斯文败类应助科研通管家采纳,获得10
10秒前
10秒前
量子星尘发布了新的文献求助10
11秒前
11秒前
王修发布了新的文献求助10
13秒前
hanshishengye完成签到 ,获得积分10
13秒前
13秒前
优雅莞完成签到,获得积分0
13秒前
单薄黑米发布了新的文献求助10
14秒前
FCL完成签到,获得积分10
15秒前
lee完成签到,获得积分10
17秒前
zhouyms发布了新的文献求助10
18秒前
hitzwd完成签到,获得积分10
19秒前
wfw完成签到,获得积分10
19秒前
科研通AI6应助小白采纳,获得10
23秒前
Akim应助司徒无剑采纳,获得10
24秒前
614606480@qq.com完成签到,获得积分10
25秒前
哈哈哈完成签到,获得积分10
29秒前
花痴的易真完成签到,获得积分10
30秒前
英俊的铭应助橙子采纳,获得10
31秒前
大大完成签到,获得积分10
31秒前
宗剑完成签到,获得积分10
35秒前
xmy完成签到,获得积分10
36秒前
38秒前
41秒前
liubo完成签到,获得积分10
41秒前
wwf完成签到,获得积分10
42秒前
志轩完成签到,获得积分10
42秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5599949
求助须知:如何正确求助?哪些是违规求助? 4685756
关于积分的说明 14839094
捐赠科研通 4674348
什么是DOI,文献DOI怎么找? 2538438
邀请新用户注册赠送积分活动 1505597
关于科研通互助平台的介绍 1471086