Read-across-based intelligent learning: development of a global q-RASAR model for the efficient quantitative predictions of skin sensitization potential of diverse organic chemicals

皮肤致敏 敏化 数量结构-活动关系 适用范围 杠杆(统计) 离群值 偏最小二乘回归 计算机科学 数据挖掘 机器学习 人工智能 生物 免疫学
作者
Arkaprava Banerjee,Kunal Roy
出处
期刊:Environmental Science: Processes & Impacts [The Royal Society of Chemistry]
卷期号:25 (10): 1626-1644 被引量:12
标识
DOI:10.1039/d3em00322a
摘要

Environmental chemicals and contaminants cause a wide array of harmful implications to terrestrial and aquatic life which ranges from skin sensitization to acute oral toxicity. The current study aims to assess the quantitative skin sensitization potential of a large set of industrial and environmental chemicals acting through different mechanisms using the novel quantitative Read-Across Structure-Activity Relationship (q-RASAR) approach. Based on the identified important set of structural and physicochemical features, Read-Across-based hyperparameters were optimized using the training set compounds followed by the calculation of similarity and error-based RASAR descriptors. Data fusion, further feature selection, and removal of prediction confidence outliers were performed to generate a partial least squares (PLS) q-RASAR model, followed by the application of various Machine Learning (ML) tools to check the quality of predictions. The PLS model was found to be the best among different models. A simple user-friendly Java-based software tool was developed based on the PLS model, which efficiently predicts the toxicity value(s) of query compound(s) along with their status of Applicability Domain (AD) in terms of leverage values. This model has been developed using structurally diverse compounds and is expected to predict efficiently and quantitatively the skin sensitization potential of environmental chemicals to estimate their occupational and health hazards.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
哈哈哈完成签到,获得积分10
1秒前
abinoo关注了科研通微信公众号
1秒前
球球完成签到,获得积分10
1秒前
Dotuu发布了新的文献求助10
2秒前
2秒前
田様应助venjohnson采纳,获得10
2秒前
给我好好读书完成签到,获得积分10
2秒前
fissh完成签到,获得积分10
3秒前
3秒前
qianqian_wang完成签到,获得积分10
3秒前
柯同发布了新的文献求助10
4秒前
拼搏尔风完成签到,获得积分10
4秒前
123456完成签到,获得积分10
4秒前
angeldrn完成签到,获得积分10
4秒前
Orange应助不会下文献啊采纳,获得10
5秒前
CipherSage应助nannan采纳,获得10
5秒前
redred发布了新的文献求助10
5秒前
5秒前
152522发布了新的文献求助10
6秒前
6秒前
桐桐应助方又亦采纳,获得10
7秒前
酷炫的乐驹完成签到,获得积分10
8秒前
Silence发布了新的文献求助10
9秒前
就好完成签到,获得积分10
9秒前
9秒前
柯同完成签到,获得积分10
10秒前
Hello应助独特尔丝采纳,获得10
10秒前
隐形曼青应助6789采纳,获得10
11秒前
Leon完成签到,获得积分10
11秒前
Dotuu完成签到,获得积分10
11秒前
12秒前
搜集达人应助小葡萄采纳,获得30
12秒前
12秒前
molly完成签到,获得积分10
12秒前
12秒前
善学以致用应助林大壮采纳,获得10
13秒前
14秒前
毛77完成签到,获得积分10
14秒前
李大了完成签到,获得积分10
15秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3143215
求助须知:如何正确求助?哪些是违规求助? 2794316
关于积分的说明 7810682
捐赠科研通 2450507
什么是DOI,文献DOI怎么找? 1303891
科研通“疑难数据库(出版商)”最低求助积分说明 627126
版权声明 601386