Machine-learning assisted multicolor platform for multiplex detection of antibiotics in environmental water samples

检出限 线性判别分析 化学 色谱法 多路复用 头孢克肟 传感器阵列 分析化学(期刊) 人工智能 机器学习 计算机科学 抗生素 生物信息学 生物化学 头孢菌素 生物
作者
Maryam Hassannia,Nafiseh Fahimi-Kashani,M. Reza Hormozi‐Nezhad
出处
期刊:Talanta [Elsevier]
卷期号:267: 125153-125153 被引量:9
标识
DOI:10.1016/j.talanta.2023.125153
摘要

Antibiotic (AB) resistance is one of daunting challenges of our time, attributed to overuse of ABs and usage of AB-contaminated food resources. Due to their detrimental impact on human health, development of visual detection methods for multiplex sensing of ABs is a top priority. In present study, a colorimetric sensor array consisting of two types of gold nanoparticles (AuNPs) were designed for identification and determination of ABs. Design principle of the probe was based on aggregation of AuNPs in the presence of ABs at different buffer conditions. The utilization of machine learning algorithms in this design enables classification and quantification of ABs in various samples. The response profile of the array was analyzed using linear discriminant analysis algorithm for classification of ABs. This colorimetric sensor array is capable of accurate distinguishing between individual ABs and their combinations. Partial least squares regression was also applied for quantitation purposes. The obtained analytical figures of merit demonstrated the potential applicability of the developed sensor array in multiplex detection of ABs. The response profiles of the array were linearly correlated to the concentrations of ABs in a wide range of concentration with limit of detections of 0.05, 0.03, 0.04, 0.01, 0.06, 0.05 and 0.04 μg.mL–1 for azithromycin, amoxicillin, ciprofloxacin, clindamycin, cefixime, doxycycline and metronidazole respectively. The practical applicability of this method was further investigated by analysis of mixture samples of ABs and determination of ABs in river and underground water with successful verification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ay4nami发布了新的文献求助10
1秒前
李爱国应助易琚采纳,获得10
2秒前
3秒前
niNe3YUE应助xlp雪采纳,获得10
3秒前
Xiaoduoyu发布了新的文献求助10
4秒前
量子星尘发布了新的文献求助10
4秒前
zhongying完成签到 ,获得积分10
5秒前
kebei完成签到,获得积分10
7秒前
Mark应助ly采纳,获得10
7秒前
科研通AI6.1应助张惠采纳,获得10
7秒前
高高发布了新的文献求助10
8秒前
啸西风完成签到,获得积分10
8秒前
8秒前
PP发布了新的文献求助10
8秒前
8秒前
12秒前
孙樊完成签到,获得积分20
12秒前
肖旻发布了新的文献求助10
12秒前
小蘑菇应助echo采纳,获得10
13秒前
13秒前
LALALA发布了新的文献求助10
13秒前
15秒前
16秒前
桐桐应助165采纳,获得10
17秒前
lmr发布了新的文献求助10
17秒前
伶俐猪完成签到 ,获得积分10
18秒前
土豆土豆完成签到,获得积分20
18秒前
孙某人发布了新的文献求助10
18秒前
科研通AI6.1应助Ay4nami采纳,获得10
19秒前
20秒前
bai发布了新的文献求助10
20秒前
qifei完成签到,获得积分10
20秒前
lyt发布了新的文献求助10
23秒前
量子星尘发布了新的文献求助10
23秒前
23秒前
所所应助可爱安莲采纳,获得10
24秒前
量子星尘发布了新的文献求助10
24秒前
24秒前
传奇3应助lmr采纳,获得10
25秒前
大模型应助糟糕的铁锤采纳,获得10
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5770329
求助须知:如何正确求助?哪些是违规求助? 5584051
关于积分的说明 15423929
捐赠科研通 4903821
什么是DOI,文献DOI怎么找? 2638379
邀请新用户注册赠送积分活动 1586244
关于科研通互助平台的介绍 1541387