Machine-learning assisted multicolor platform for multiplex detection of antibiotics in environmental water samples

检出限 线性判别分析 化学 色谱法 多路复用 头孢克肟 传感器阵列 分析化学(期刊) 人工智能 机器学习 计算机科学 抗生素 生物信息学 生物化学 头孢菌素 生物
作者
M. Hassannia,Nafiseh Fahimi-Kashani,M. Reza Hormozi‐Nezhad
出处
期刊:Talanta [Elsevier]
卷期号:267: 125153-125153 被引量:4
标识
DOI:10.1016/j.talanta.2023.125153
摘要

Antibiotic (AB) resistance is one of daunting challenges of our time, attributed to overuse of ABs and usage of AB-contaminated food resources. Due to their detrimental impact on human health, development of visual detection methods for multiplex sensing of ABs is a top priority. In present study, a colorimetric sensor array consisting of two types of gold nanoparticles (AuNPs) were designed for identification and determination of ABs. Design principle of the probe was based on aggregation of AuNPs in the presence of ABs at different buffer conditions. The utilization of machine learning algorithms in this design enables classification and quantification of ABs in various samples. The response profile of the array was analyzed using linear discriminant analysis algorithm for classification of ABs. This colorimetric sensor array is capable of accurate distinguishing between individual ABs and their combinations. Partial least squares regression was also applied for quantitation purposes. The obtained analytical figures of merit demonstrated the potential applicability of the developed sensor array in multiplex detection of ABs. The response profiles of the array were linearly correlated to the concentrations of ABs in a wide range of concentration with limit of detections of 0.05, 0.03, 0.04, 0.01, 0.06, 0.05 and 0.04 μg.mL–1 for azithromycin, amoxicillin, ciprofloxacin, clindamycin, cefixime, doxycycline and metronidazole respectively. The practical applicability of this method was further investigated by analysis of mixture samples of ABs and determination of ABs in river and underground water with successful verification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Sofia发布了新的文献求助60
1秒前
2秒前
橘子姐姐发布了新的文献求助10
3秒前
yanyan完成签到,获得积分10
4秒前
TT完成签到,获得积分10
5秒前
5秒前
了然完成签到 ,获得积分10
6秒前
jxp完成签到,获得积分10
6秒前
jojo完成签到 ,获得积分10
7秒前
7秒前
勤劳落雁完成签到 ,获得积分10
7秒前
10秒前
爆米花应助科研通管家采纳,获得30
10秒前
顾矜应助科研通管家采纳,获得10
10秒前
10秒前
11秒前
田様应助科研通管家采纳,获得10
11秒前
科目三应助科研通管家采纳,获得10
11秒前
李爱国应助科研通管家采纳,获得10
11秒前
打打应助科研通管家采纳,获得10
11秒前
RC_Wang应助科研通管家采纳,获得10
11秒前
科研通AI5应助科研通管家采纳,获得10
11秒前
11秒前
星辰大海应助科研通管家采纳,获得10
11秒前
CipherSage应助科研通管家采纳,获得10
11秒前
赘婿应助Quzhengkai采纳,获得10
11秒前
sutharsons应助科研通管家采纳,获得30
11秒前
李爱国应助科研通管家采纳,获得30
12秒前
12秒前
12秒前
调研昵称发布了新的文献求助10
12秒前
CodeCraft应助清新的苑博采纳,获得10
13秒前
所所应助Chen采纳,获得10
14秒前
16秒前
16秒前
goldenfleece发布了新的文献求助10
16秒前
怕黑的钥匙完成签到 ,获得积分10
16秒前
zhangsf88完成签到,获得积分10
16秒前
科研通AI5应助科研小能手采纳,获得10
16秒前
乐乐应助热情芷荷采纳,获得10
17秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808