In-situ growth of electrically conductive MOFs in wood cellulose scaffold for flexible, robust and hydrophobic membranes with improved electrochemical performance

材料科学 电化学 多孔性 脚手架 纤维素 超级电容器 电极 细菌纤维素 复合材料 化学工程 纳米技术 生物医学工程 化学 医学 生物化学 物理化学 工程类
作者
Zhinan Wang,Borong Sun,Junqi Liao,Cao Shuqi,Liping Li,Qingwen Wang,Chuigen Guo
出处
期刊:International Journal of Biological Macromolecules [Elsevier]
卷期号:255: 127989-127989 被引量:4
标识
DOI:10.1016/j.ijbiomac.2023.127989
摘要

Electrically conductive metal-organic frameworks (EC-MOFs) have attracted great attentions in electrochemical fields, but their practical application is limited by their hard-to-shape powder form. The aims was to integrate continuously nucleated EC-MOFs on natural wood cellulose scaffold to develop biobased EC-MOFs membrane with robust flexibility and improved electrochemical performance for wearable supercapacitors. EC-MOF materials (NiCAT or CuCAT) were successfully incorporated onto porous tempo-oxidized wood (TOW) scaffold to create ultrathin membranes through electrostatic force-mediated interfacial growth and simple room-temperature densification. The studies demonstrated the uniform and continuous EC-MOFs nanolayer on TOW scaffold and the interfacial bonding between EC-MOF and TOW. The densification of EC-MOF@TOW bulk yielded highly flexible ultrathin membranes (about 0.3 mm) with high tensile stress exceeding 180 MPa. Moreover, the 50 %-NiCAT@TOW membrane demonstrated high electrical conductivity (4.227 S·m−1) and hydrophobicity (contact angle exceeding 130°). Notably, these properties remained stable even after twisting or bending deformation. Furthermore, the electrochemical performance of EC-MOF@TOW membrane with hierarchical pores outperformed the EC-MOF powder electrode. This study innovatively anchored EC-MOFs onto wood through facile process, yielding highly flexible membranes with exceptional performance that outperforms most of reported conductive wood-based membranes. These findings would provide some references for flexible and functional EC-MOF/wood membranes for wearable devices.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
隐形曼青应助李幺幺采纳,获得10
刚刚
lai完成签到,获得积分10
刚刚
宋温暖应助44采纳,获得10
刚刚
1秒前
1秒前
2秒前
2秒前
2秒前
2秒前
李健应助15348547697采纳,获得10
2秒前
诚心盼海发布了新的文献求助10
2秒前
yang123完成签到,获得积分20
2秒前
稳重电话完成签到,获得积分10
2秒前
2秒前
3秒前
高贵谷芹完成签到,获得积分10
3秒前
科研通AI6应助小羊羔采纳,获得10
3秒前
量子星尘发布了新的文献求助10
4秒前
4秒前
4秒前
zzz发布了新的文献求助10
4秒前
4秒前
5秒前
maomao201026发布了新的文献求助10
5秒前
yan123完成签到,获得积分10
5秒前
共享精神应助chai采纳,获得10
5秒前
Apricity应助wuxunxun2015采纳,获得10
5秒前
5秒前
tina完成签到,获得积分10
6秒前
科研顺利发布了新的文献求助10
7秒前
yang123发布了新的文献求助10
7秒前
8秒前
zzz发布了新的文献求助10
8秒前
熊猫发布了新的文献求助10
8秒前
8秒前
www发布了新的文献求助10
9秒前
9秒前
琳67发布了新的文献求助10
9秒前
cult发布了新的文献求助10
9秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5620260
求助须知:如何正确求助?哪些是违规求助? 4704917
关于积分的说明 14929736
捐赠科研通 4761567
什么是DOI,文献DOI怎么找? 2550911
邀请新用户注册赠送积分活动 1513652
关于科研通互助平台的介绍 1474592