Using a New Deep Learning Method for 3D Cephalometry in Patients With Hemifacial Microsomia

半颜面微粒症 头影测量 医学 颅面 口腔正畸科 牙科 精神科
作者
Xu Meng,Bingyang Liu,Zhaoyang Luo,Min Sun,Yongqian Wang,Ningbei Yin,Xiaojun Tang,Tao Song
出处
期刊:Annals of Plastic Surgery [Ovid Technologies (Wolters Kluwer)]
卷期号:91 (3): 381-384 被引量:1
标识
DOI:10.1097/sap.0000000000003647
摘要

Deep learning algorithms based on automatic 3D cephalometric marking points about people without craniomaxillofacial deformities have achieved good results. However, there has been no previous report about hemifacial microsomia (HFM). The purpose of this study is to apply a new deep learning method based on a 3D point cloud graph convolutional neural network to predict and locate landmarks in patients with HFM based on the relationships between points. The authors used a PointNet++ model to investigate the automatic 3D cephalometry. And the mean distance error (MDE) of the center coordinate position and the success detection rate (SDR) were used to evaluate the accuracy of systematic labeling. A total of 135 patients were enrolled. The MDE for all 32 landmarks was 1.46 ± 1.308 mm, and 10 landmarks showed SDRs at 2 mm over 90%, and only 4 landmarks showed SDRs at 2 mm under 60%. Compared with the manual reproducibility, the standard distance deviation and coefficient of variation values for the MDE of the artificial intelligence system was 0.67 and 0.43, respectively. In summary, our training sets were derived from HFM computed tomography to achieve accurate results. The 3D cephalometry system based on the graph convolutional network algorithm may be suitable for the 3D cephalometry system in HFM cases. More accurate results may be obtained if the HFM training set is expanded in the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
沉小墨发布了新的文献求助10
2秒前
思源应助冬虫夏草采纳,获得10
2秒前
萧水白应助song采纳,获得10
2秒前
从容的盼晴完成签到,获得积分10
2秒前
希望天下0贩的0应助8letters采纳,获得10
2秒前
香蕉觅云应助sjr采纳,获得10
4秒前
学呀学发布了新的文献求助10
4秒前
5秒前
科研通AI2S应助仁爱曼梅采纳,获得10
6秒前
Reftro发布了新的文献求助10
6秒前
NexusExplorer应助于大本事采纳,获得10
7秒前
小兔发布了新的文献求助10
9秒前
雾眠气泡水完成签到,获得积分10
10秒前
11秒前
ding应助贤嘚嘚采纳,获得30
11秒前
真实的一鸣完成签到,获得积分10
11秒前
12秒前
12秒前
顾矜应助笨笨的曼文采纳,获得10
12秒前
TING发布了新的文献求助10
13秒前
橘子爱汽水关注了科研通微信公众号
13秒前
勤劳水香完成签到,获得积分10
14秒前
Owen应助无恙采纳,获得30
15秒前
小马甲应助zz采纳,获得10
15秒前
15秒前
赘婿应助一一采纳,获得10
16秒前
研友_LOoomL发布了新的文献求助10
16秒前
郑旭辉发布了新的文献求助10
17秒前
科研通AI2S应助LL采纳,获得10
18秒前
人生似碗酒完成签到,获得积分10
18秒前
21秒前
桐炫发布了新的文献求助10
22秒前
Margarate完成签到,获得积分10
22秒前
22秒前
23秒前
23秒前
24秒前
24秒前
24秒前
泡菜汤味豆腐完成签到,获得积分10
25秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Semiconductor Process Reliability in Practice 720
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
The Heath Anthology of American Literature: Early Nineteenth Century 1800 - 1865 Vol. B 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3228750
求助须知:如何正确求助?哪些是违规求助? 2876508
关于积分的说明 8195369
捐赠科研通 2543774
什么是DOI,文献DOI怎么找? 1373981
科研通“疑难数据库(出版商)”最低求助积分说明 646872
邀请新用户注册赠送积分活动 621469