已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Automated Student Classroom Behaviors’ Perception and Identification Using Motion Sensors

计算机科学 动态时间归整 感知 鉴定(生物学) 投票 运动(物理) 人工智能 特征提取 人机交互 机器学习 心理学 政治 法学 神经科学 生物 植物 政治学
作者
Hongmin Wang,Chi Gao,Fei Hong,Christina Zong‐Hao,Quan Wang,Ziyu He,Maojun Li
出处
期刊:Bioengineering [MDPI AG]
卷期号:10 (2): 127-127 被引量:2
标识
DOI:10.3390/bioengineering10020127
摘要

With the rapid development of artificial intelligence technology, the exploration and application in the field of intelligent education has become a research hotspot of increasing concern. In the actual classroom scenarios, students' classroom behavior is an important factor that directly affects their learning performance. Specifically, students with poor self-management abilities, particularly specific developmental disorders, may face educational and academic difficulties owing to physical or psychological factors. Therefore, the intelligent perception and identification of school-aged children's classroom behaviors are extremely valuable and significant. The traditional method for identifying students' classroom behavior relies on statistical surveys conducted by teachers, which incurs problems such as being time-consuming, labor-intensive, privacy-violating, and an inaccurate manual intervention. To address the above-mentioned issues, we constructed a motion sensor-based intelligent system to realize the perception and identification of classroom behavior in the current study. For the acquired sensor signal, we proposed a Voting-Based Dynamic Time Warping algorithm (VB-DTW) in which a voting mechanism is used to compare the similarities between adjacent clips and extract valid action segments. Subsequent experiments have verified that effective signal segments can help improve the accuracy of behavior identification. Furthermore, upon combining with the classroom motion data acquisition system, through the powerful feature extraction ability of the deep learning algorithms, the effectiveness and feasibility are verified from the perspectives of the dimensional signal characteristics and time series separately so as to realize the accurate, non-invasive and intelligent children's behavior detection. To verify the feasibility of the proposed method, a self-constructed dataset (SCB-13) was collected. Thirteen participants were invited to perform 14 common class behaviors, wearing motion sensors whose data were recorded by a program. In SCB-13, the proposed method achieved 100% identification accuracy. Based on the proposed algorithms, it is possible to provide immediate feedback on students' classroom performance and help them improve their learning performance while providing an essential reference basis and data support for constructing an intelligent digital education platform.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
凶狠的猎豹完成签到,获得积分10
刚刚
1秒前
子乔发布了新的文献求助10
1秒前
嘻嘻发布了新的文献求助10
3秒前
科研通AI2S应助科研通管家采纳,获得10
3秒前
Candice应助科研通管家采纳,获得10
3秒前
科研通AI2S应助科研通管家采纳,获得10
3秒前
烟花应助科研通管家采纳,获得10
3秒前
虚拟的落雁完成签到,获得积分10
4秒前
z1jioyeah完成签到 ,获得积分10
5秒前
啊哈发布了新的文献求助20
6秒前
7秒前
66发完成签到,获得积分10
11秒前
13秒前
DChen完成签到 ,获得积分10
14秒前
C9完成签到 ,获得积分10
15秒前
从容芮应助Ferris采纳,获得10
20秒前
ding应助尼古拉斯.科研.红采纳,获得10
21秒前
充电宝应助有热心愿意采纳,获得10
21秒前
肖果完成签到 ,获得积分10
22秒前
neechine完成签到 ,获得积分10
23秒前
29秒前
类类完成签到,获得积分10
29秒前
火星的雪完成签到 ,获得积分10
32秒前
XUXU发布了新的文献求助10
32秒前
fufunohuhu发布了新的文献求助10
33秒前
甜画舫完成签到 ,获得积分10
33秒前
和和和完成签到,获得积分10
34秒前
损我空发布了新的文献求助10
35秒前
snowwwwwwwwfox完成签到,获得积分10
35秒前
小蘑菇应助cfplhys采纳,获得10
37秒前
starboy2nd关注了科研通微信公众号
38秒前
39秒前
Owen应助就是笨怎么了采纳,获得10
39秒前
英姑应助嫩黄的大纽子花采纳,获得10
41秒前
开放又亦完成签到 ,获得积分10
42秒前
多多完成签到 ,获得积分10
42秒前
Owen应助kun采纳,获得10
43秒前
大鱼完成签到,获得积分20
44秒前
SciGPT应助淡淡的千风采纳,获得10
44秒前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1500
Les Mantodea de Guyane 1000
Very-high-order BVD Schemes Using β-variable THINC Method 950
Field Guide to Insects of South Africa 660
Foucault's Technologies Another Way of Cutting Reality 500
Product Class 33: N-Arylhydroxylamines 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3388282
求助须知:如何正确求助?哪些是违规求助? 3000731
关于积分的说明 8793133
捐赠科研通 2686800
什么是DOI,文献DOI怎么找? 1471782
科研通“疑难数据库(出版商)”最低求助积分说明 680653
邀请新用户注册赠送积分活动 673282