A hybrid deep learning model for regional O3 and NO2 concentrations prediction based on spatiotemporal dependencies in air quality monitoring network

残余物 空气质量指数 环境科学 计算机科学 人工神经网络 污染物 数据挖掘 期限(时间) 人工智能 气象学 地理 算法 量子力学 物理 有机化学 化学
作者
Cui-Lin Wu,Hong-di He,Rui-feng Song,Xing-hang Zhu,Zhong‐Ren Peng,Qingyan Fu,Jun Pan
出处
期刊:Environmental Pollution [Elsevier BV]
卷期号:320: 121075-121075 被引量:42
标识
DOI:10.1016/j.envpol.2023.121075
摘要

Short-term prediction of urban air quality is critical to pollution management and public health. However, existing studies have failed to make full use of the spatiotemporal correlations or topological relationships among air quality monitoring networks (AQMN), and hence exhibit low precision in regional prediction tasks. With this consideration, we proposed a novel deep learning-based hybrid model of Res-GCN-BiLSTM combining the residual neural network (ResNet), graph convolutional network (GCN), and bidirectional long short-term memory (BiLSTM), for predicting short-term regional NO2 and O3 concentrations. Auto-correlation analysis and cluster analysis were first utilized to reveal the inherent temporal and spatial properties respectively. They demonstrated that there existed temporal daily periodicity and spatial similarity in AQMN. Then the identified spatiotemporal properties were sufficiently leveraged, and monitoring network topological information, as well as auxiliary pollutants and meteorology were also adaptively integrated into the model. The hourly observed data from 51 air quality monitoring stations and meteorological data in Shanghai were employed to evaluate it. Results show that the Res-GCN-BiLSTM model was better adapted to the pollutant characteristics and improved the prediction accuracy, with nearly 11% and 17% improvements in mean absolute error for NO2 and O3, respectively compared to the best performing baseline model. Among the three types of monitoring stations, traffic monitoring stations performed the best for O3, but the worst for NO2, mainly due to the impacts of intensive traffic emissions and the titration reaction. These findings illustrate that the hybrid architecture is more suitable for regional pollutant concentration.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
andrele应助666采纳,获得10
刚刚
爱听歌老1完成签到,获得积分10
1秒前
田様应助干净的问寒采纳,获得10
1秒前
扎心发布了新的文献求助10
1秒前
99完成签到,获得积分10
1秒前
林佳一完成签到,获得积分10
1秒前
2秒前
加菲发布了新的文献求助10
2秒前
爆米花应助电闪采纳,获得10
3秒前
归尘发布了新的文献求助10
3秒前
Xiaoqiu发布了新的文献求助10
3秒前
常鹏飞发布了新的文献求助10
3秒前
3秒前
4秒前
4秒前
David完成签到 ,获得积分10
5秒前
朻安完成签到,获得积分10
5秒前
5秒前
5秒前
6秒前
cream完成签到,获得积分20
6秒前
JamesPei应助大橙子采纳,获得10
6秒前
OOOorange完成签到,获得积分10
6秒前
Liangyu发布了新的文献求助10
6秒前
张国柱完成签到,获得积分10
7秒前
舒服的莞发布了新的文献求助10
7秒前
lei发布了新的文献求助10
7秒前
SilentRP完成签到,获得积分10
7秒前
7秒前
7秒前
8秒前
¥#¥-11完成签到,获得积分10
8秒前
归尘发布了新的文献求助10
9秒前
9秒前
和谐续发布了新的文献求助10
9秒前
情怀应助ZSXL采纳,获得10
9秒前
OOOorange发布了新的文献求助10
9秒前
酷波er应助杨杨采纳,获得10
10秒前
小肥鱼发布了新的文献求助30
11秒前
15发布了新的文献求助10
12秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3954042
求助须知:如何正确求助?哪些是违规求助? 3500003
关于积分的说明 11097832
捐赠科研通 3230521
什么是DOI,文献DOI怎么找? 1785972
邀请新用户注册赠送积分活动 869759
科研通“疑难数据库(出版商)”最低求助积分说明 801583