Molecular imprinting functionalization of magnetic biochar to adsorb sulfamethoxazole: Mechanism, regeneration and targeted adsorption

吸附 生物炭 水圈 化学 表面改性 化学工程 弗伦德利希方程 分子印迹 氢键 核化学 有机化学 催化作用 选择性 分子 物理化学 热解 生物圈 生物 工程类 生态学
作者
Mingxuan Sun,Weijun Tian,Meile Chu,Mengyuan Zou,Jing Zhao
出处
期刊:Chemical Engineering Research & Design [Elsevier]
卷期号:171: 238-249 被引量:27
标识
DOI:10.1016/j.psep.2023.01.024
摘要

Sulfamethoxazole (SMX), a typical medical antibiotic, is regarded as a major risk in the surface hydrosphere because of its harmful biological reaction and potential to trigger bacterial resistance. Ameliorating the hydrosphere will become more convenient if the challenging adsorption and separation of SMX in hydrosphere are achieved. To reveal the mechanism, regeneration and targeted adsorption of SMX on a novel surface-imprinted polymer (MIP-MBC) and batch experiments were carried out in this study. MIP-MBC was prepared in organic solution using a Fe-Mn-modified biochar to selectively adsorb SMX in a water solution. Owing to the mesopores and oxygen-containing functional groups of MIP-MBC, imprinted cavities in pores are found to lead to a remarkable adsorption efficiency for SMX. The maximum adsorption capacity for SMX reaches up to 25.65 mg g−1, which is 1.34 times that of the non-molecularly imprinted magnetic biochar (NIP-MBC). The adsorption process matches well with the second-order kinetics and Freundlich thermodynamic model, which indicates that hydrogen bonds and electrostatic interactions are simultaneously involved in the adsorption process. After five cycles, the adsorption rate for MIP-MBC reaches 88.34%. Furthermore, MIP-MBC is applied to the binary system to remove SMX, and it can be used to accurately identify and adsorb SMX due to K`> 1 and being independent of the ion concentration. The high affinity site plays a major role in the imprinting process for SMX. This study furnishes a novel perspective for promoting the practical application and economic benefits of targeted biochar material to capture SMX in sewage purification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
研友_LXdbaL完成签到,获得积分10
1秒前
2秒前
在水一方应助66采纳,获得10
3秒前
3秒前
3秒前
缘一发布了新的文献求助10
4秒前
junzilan发布了新的文献求助10
5秒前
CipherSage应助赖道之采纳,获得10
6秒前
ccc完成签到,获得积分10
6秒前
6秒前
6秒前
9秒前
Pauline完成签到,获得积分10
11秒前
jackie发布了新的文献求助10
11秒前
笨笨摇伽发布了新的文献求助10
13秒前
科目三应助皓月繁星采纳,获得10
13秒前
tomato完成签到,获得积分20
15秒前
CodeCraft应助缘一采纳,获得10
16秒前
小二郎应助刘铭晨采纳,获得10
16秒前
16秒前
大个应助风雨1210采纳,获得10
16秒前
一壶清酒完成签到,获得积分10
16秒前
17秒前
tomato发布了新的文献求助30
18秒前
陈莹发布了新的文献求助10
19秒前
20秒前
20秒前
小狗同志006完成签到,获得积分10
20秒前
20秒前
21秒前
21秒前
皓月繁星完成签到,获得积分10
21秒前
ZeJ发布了新的文献求助10
22秒前
22秒前
23秒前
usrcu完成签到 ,获得积分10
23秒前
122x应助赖道之采纳,获得10
24秒前
厉不厉害你坤哥完成签到,获得积分10
24秒前
wuzhizhiya发布了新的文献求助10
25秒前
25秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808