Molecular imprinting functionalization of magnetic biochar to adsorb sulfamethoxazole: Mechanism, regeneration and targeted adsorption

吸附 生物炭 水圈 化学 表面改性 化学工程 弗伦德利希方程 分子印迹 氢键 核化学 有机化学 催化作用 选择性 分子 物理化学 热解 生物圈 生物 工程类 生态学
作者
Ziyang Li,Weijun Tian,Meile Chu,Mengyuan Zou,Jing Zhao
出处
期刊:Chemical Engineering Research & Design [Elsevier BV]
卷期号:171: 238-249 被引量:42
标识
DOI:10.1016/j.psep.2023.01.024
摘要

Sulfamethoxazole (SMX), a typical medical antibiotic, is regarded as a major risk in the surface hydrosphere because of its harmful biological reaction and potential to trigger bacterial resistance. Ameliorating the hydrosphere will become more convenient if the challenging adsorption and separation of SMX in hydrosphere are achieved. To reveal the mechanism, regeneration and targeted adsorption of SMX on a novel surface-imprinted polymer (MIP-MBC) and batch experiments were carried out in this study. MIP-MBC was prepared in organic solution using a Fe-Mn-modified biochar to selectively adsorb SMX in a water solution. Owing to the mesopores and oxygen-containing functional groups of MIP-MBC, imprinted cavities in pores are found to lead to a remarkable adsorption efficiency for SMX. The maximum adsorption capacity for SMX reaches up to 25.65 mg g−1, which is 1.34 times that of the non-molecularly imprinted magnetic biochar (NIP-MBC). The adsorption process matches well with the second-order kinetics and Freundlich thermodynamic model, which indicates that hydrogen bonds and electrostatic interactions are simultaneously involved in the adsorption process. After five cycles, the adsorption rate for MIP-MBC reaches 88.34%. Furthermore, MIP-MBC is applied to the binary system to remove SMX, and it can be used to accurately identify and adsorb SMX due to K`> 1 and being independent of the ion concentration. The high affinity site plays a major role in the imprinting process for SMX. This study furnishes a novel perspective for promoting the practical application and economic benefits of targeted biochar material to capture SMX in sewage purification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
huangnvshi发布了新的文献求助10
刚刚
刚刚
含糊的画板完成签到,获得积分10
刚刚
Propitious完成签到,获得积分20
1秒前
动听以松发布了新的文献求助10
1秒前
Propitious发布了新的文献求助10
5秒前
眼睛大的芷珊完成签到 ,获得积分10
5秒前
15987完成签到,获得积分10
5秒前
科研完成签到,获得积分10
6秒前
淡定从霜发布了新的文献求助10
6秒前
orixero应助LYT采纳,获得10
7秒前
英姑应助高高采纳,获得10
8秒前
充电宝应助生动的踏歌采纳,获得10
8秒前
Yy关注了科研通微信公众号
8秒前
ding应助动听以松采纳,获得10
10秒前
小马甲应助球球采纳,获得10
10秒前
清沧炽魂发布了新的文献求助10
11秒前
11秒前
落叶完成签到,获得积分10
11秒前
脑洞疼应助梦心采纳,获得10
11秒前
思源应助Propitious采纳,获得10
11秒前
11秒前
烟花应助超速也文章采纳,获得10
12秒前
13秒前
安徽梁朝伟完成签到,获得积分10
13秒前
Jasper应助胡萝卜采纳,获得10
13秒前
干净傲霜完成签到 ,获得积分10
14秒前
X暴富发布了新的文献求助10
14秒前
14秒前
15秒前
清脆惜寒发布了新的文献求助10
16秒前
17秒前
LYT完成签到,获得积分10
17秒前
Lotus完成签到,获得积分10
17秒前
Walder发布了新的文献求助30
18秒前
CDI和LIB发布了新的文献求助10
18秒前
Dskelf发布了新的文献求助10
18秒前
隐形曼青应助迷人紫寒采纳,获得10
20秒前
Eiland完成签到,获得积分20
21秒前
weifeng发布了新的文献求助10
22秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Theory of Dislocations (3rd ed.) 500
The Emotional Life of Organisations 500
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5213850
求助须知:如何正确求助?哪些是违规求助? 4389532
关于积分的说明 13667242
捐赠科研通 4250710
什么是DOI,文献DOI怎么找? 2332178
邀请新用户注册赠送积分活动 1329835
关于科研通互助平台的介绍 1283481