Imaging and biophysical modelling of thrombogenic mechanisms in atrial fibrillation and stroke

血栓形成 心房颤动 医学 心脏病学 冲程(发动机) 血栓 内科学 磁共振成像 血流 心脏成像 放射科 血栓形成 机械工程 工程类
作者
Ahmed Qureshi,Gregory Y.H. Lip,David Nordsletten,Steven E. Williams,Oleg Aslanidi,Adelaide de Vecchi
出处
期刊:Frontiers in Cardiovascular Medicine [Frontiers Media SA]
卷期号:9 被引量:10
标识
DOI:10.3389/fcvm.2022.1074562
摘要

Atrial fibrillation (AF) underlies almost one third of all ischaemic strokes, with the left atrial appendage (LAA) identified as the primary thromboembolic source. Current stroke risk stratification approaches, such as the CHA2DS2-VASc score, rely mostly on clinical comorbidities, rather than thrombogenic mechanisms such as blood stasis, hypercoagulability and endothelial dysfunction-known as Virchow's triad. While detection of AF-related thrombi is possible using established cardiac imaging techniques, such as transoesophageal echocardiography, there is a growing need to reliably assess AF-patient thrombogenicity prior to thrombus formation. Over the past decade, cardiac imaging and image-based biophysical modelling have emerged as powerful tools for reproducing the mechanisms of thrombogenesis. Clinical imaging modalities such as cardiac computed tomography, magnetic resonance and echocardiographic techniques can measure blood flow velocities and identify LA fibrosis (an indicator of endothelial dysfunction), but imaging remains limited in its ability to assess blood coagulation dynamics. In-silico cardiac modelling tools-such as computational fluid dynamics for blood flow, reaction-diffusion-convection equations to mimic the coagulation cascade, and surrogate flow metrics associated with endothelial damage-have grown in prevalence and advanced mechanistic understanding of thrombogenesis. However, neither technique alone can fully elucidate thrombogenicity in AF. In future, combining cardiac imaging with in-silico modelling and integrating machine learning approaches for rapid results directly from imaging data will require development under a rigorous framework of verification and clinical validation, but may pave the way towards enhanced personalised stroke risk stratification in the growing population of AF patients. This Review will focus on the significant progress in these fields.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
12完成签到,获得积分10
1秒前
2秒前
albertxin发布了新的文献求助10
3秒前
dwls应助朴实的砖家采纳,获得10
3秒前
斯文败类应助苗条的千易采纳,获得10
3秒前
llxgjx完成签到,获得积分10
5秒前
hwh553836258完成签到,获得积分10
5秒前
难过松鼠应助Curlycat采纳,获得10
5秒前
周周发布了新的文献求助10
5秒前
6秒前
闪闪完成签到,获得积分10
6秒前
6秒前
zou完成签到,获得积分10
6秒前
LQj完成签到,获得积分20
8秒前
Song完成签到,获得积分10
8秒前
8秒前
领导范儿应助花花123采纳,获得10
9秒前
9秒前
10秒前
10秒前
Lee发布了新的文献求助10
10秒前
英姑应助初遇之时最暖采纳,获得10
10秒前
11秒前
11秒前
香蕉觅云应助朴实的天佑采纳,获得10
12秒前
顺心含蕾发布了新的文献求助10
13秒前
煮酒论豆芽完成签到,获得积分10
13秒前
13秒前
14秒前
慕青应助一丢丢采纳,获得30
14秒前
不知名的呆毛应助wankai采纳,获得10
14秒前
HIKING完成签到,获得积分10
14秒前
小新发布了新的文献求助10
15秒前
15秒前
南风应助li采纳,获得10
15秒前
念头发布了新的文献求助10
16秒前
mahaha发布了新的文献求助10
16秒前
xuhaohao发布了新的文献求助10
16秒前
骅暘完成签到,获得积分10
16秒前
搜集达人应助勤奋小张采纳,获得10
17秒前
高分求助中
Востребованный временем 2500
Hopemont Capacity Assessment Interview manual and scoring guide 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Neuromuscular and Electrodiagnostic Medicine Board Review 700
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 500
中介效应和调节效应模型进阶 400
Refractive Index Metrology of Optical Polymers 400
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3444202
求助须知:如何正确求助?哪些是违规求助? 3040237
关于积分的说明 8980504
捐赠科研通 2728907
什么是DOI,文献DOI怎么找? 1496728
科研通“疑难数据库(出版商)”最低求助积分说明 691817
邀请新用户注册赠送积分活动 689386