Imaging and biophysical modelling of thrombogenic mechanisms in atrial fibrillation and stroke

血栓形成 心房颤动 医学 心脏病学 冲程(发动机) 血栓 内科学 磁共振成像 血流 心脏成像 放射科 血栓形成 机械工程 工程类
作者
Ahmed Qureshi,Gregory Y.H. Lip,David Nordsletten,Steven E. Williams,Oleg Aslanidi,Adelaide de Vecchi
出处
期刊:Frontiers in Cardiovascular Medicine [Frontiers Media SA]
卷期号:9 被引量:10
标识
DOI:10.3389/fcvm.2022.1074562
摘要

Atrial fibrillation (AF) underlies almost one third of all ischaemic strokes, with the left atrial appendage (LAA) identified as the primary thromboembolic source. Current stroke risk stratification approaches, such as the CHA2DS2-VASc score, rely mostly on clinical comorbidities, rather than thrombogenic mechanisms such as blood stasis, hypercoagulability and endothelial dysfunction-known as Virchow's triad. While detection of AF-related thrombi is possible using established cardiac imaging techniques, such as transoesophageal echocardiography, there is a growing need to reliably assess AF-patient thrombogenicity prior to thrombus formation. Over the past decade, cardiac imaging and image-based biophysical modelling have emerged as powerful tools for reproducing the mechanisms of thrombogenesis. Clinical imaging modalities such as cardiac computed tomography, magnetic resonance and echocardiographic techniques can measure blood flow velocities and identify LA fibrosis (an indicator of endothelial dysfunction), but imaging remains limited in its ability to assess blood coagulation dynamics. In-silico cardiac modelling tools-such as computational fluid dynamics for blood flow, reaction-diffusion-convection equations to mimic the coagulation cascade, and surrogate flow metrics associated with endothelial damage-have grown in prevalence and advanced mechanistic understanding of thrombogenesis. However, neither technique alone can fully elucidate thrombogenicity in AF. In future, combining cardiac imaging with in-silico modelling and integrating machine learning approaches for rapid results directly from imaging data will require development under a rigorous framework of verification and clinical validation, but may pave the way towards enhanced personalised stroke risk stratification in the growing population of AF patients. This Review will focus on the significant progress in these fields.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ywindm完成签到,获得积分10
刚刚
难过的小甜瓜完成签到,获得积分10
刚刚
将就小白完成签到,获得积分10
刚刚
刚刚
1秒前
兴奋书雪完成签到,获得积分20
1秒前
救赎完成签到,获得积分10
1秒前
2秒前
于芋菊完成签到,获得积分0
2秒前
中二少女爱喝可乐完成签到,获得积分10
2秒前
啦啦啦发布了新的文献求助30
2秒前
2秒前
2秒前
zr237618发布了新的文献求助10
3秒前
烂漫明轩完成签到,获得积分10
4秒前
刘佳敏完成签到 ,获得积分10
4秒前
4秒前
小闫完成签到,获得积分10
4秒前
卡卡龍特完成签到,获得积分10
4秒前
疯狂的科研小羊完成签到,获得积分10
5秒前
5秒前
小蘑菇应助哒哒哒采纳,获得10
5秒前
别喊我起床完成签到,获得积分10
5秒前
小茵茵完成签到,获得积分10
5秒前
火蓝完成签到,获得积分10
5秒前
5秒前
6秒前
hyd1640完成签到,获得积分10
6秒前
墨丿筠发布了新的文献求助10
6秒前
7秒前
meme完成签到,获得积分10
7秒前
桐桐应助开朗可行采纳,获得10
7秒前
科研通AI5应助ssss采纳,获得10
7秒前
7秒前
forg发布了新的文献求助10
8秒前
SQL完成签到 ,获得积分10
8秒前
小闫发布了新的文献求助10
9秒前
清秀的砖头完成签到,获得积分10
9秒前
Hum0ro98完成签到,获得积分10
9秒前
刘西西完成签到,获得积分10
9秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 800
Conference Record, IAS Annual Meeting 1977 610
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
白土三平研究 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3556082
求助须知:如何正确求助?哪些是违规求助? 3131635
关于积分的说明 9392313
捐赠科研通 2831483
什么是DOI,文献DOI怎么找? 1556442
邀请新用户注册赠送积分活动 726605
科研通“疑难数据库(出版商)”最低求助积分说明 715912