尖晶石
降级(电信)
催化作用
干扰(通信)
苯酚
离子
化学
空位缺陷
氧化物
光化学
无机化学
材料科学
结晶学
计算机科学
有机化学
冶金
电信
计算机网络
频道(广播)
作者
Haikun Jia,Suhua Chen,Rumeng Liu,Shanshan Dong,Zhenyu Wang,Z. Y. Ran,Fulin Wang,Zhenxing Zeng,Dionysios D. Dionysiou,Xiaodong Wang
摘要
Heterogeneous peroxymonosulfate (PMS)-activation-based advanced oxidation process (PMS-AOP) using spinel catalysts is an effective way to degrade organic pollutants in water. However, the PMS activation performance for spinel catalysts is always unsatisfactory due to the interference of co-existing anions in waters. In this study, we used a sulfate-modification strategy to prepare a sea urchin-like Co-Mn spinel catalyst (CoMn2O4-S) with abundant oxygen vacancies for counteracting the interference of anions in pollutant degradation. Compared with the conventional Co-Mn spinel catalyst without the sulfate modification (CoMn2O4), CoMn2O4-S exhibited a decreased inhibitory rate of phenol degradation efficiency. For a typical CoMn2O4-S/PMS system, the inhibition of phenol removal rate constants by 5 mM NO3−, Cl−, and SO42− were 24.3%, 13.4%, and 1.7%, which were significantly lower than those for a CoMn2O4/PMS system with 5mM NO3− (46.8%), Cl− (43.2%), and SO42− (21.7%). The decreased inhibitory rate of PE removal was demonstrated to be ascribed to that the sea urchin-like structure could alleviate the agglomeration of catalyst particles of CoMn2O4-S and the resulting decrease of reaction sites. Particularly, H2PO4− inhibited the PE removal by 24.3% in the CoMn2O4/PMS system, whereas it promoted the PE removal by 100.1% in the CoMn2O4-S/PMS system. Electronic paramagnetic resonance (EPR) and quenching experiments showed that the active species in both CoMn2O4/PMS and CoMn2O4-S/PMS systems were mainly sulfate radical. LSV measurements demonstrated that oxygen vacancy and H2PO4− synergistically promoted SO4●− diffusion into bulk water where pollutants could be easily be in a collision with and consequently reacted with, thereby enhancing pollutant degradation. Additionally, CoMn2O4-S presented outstanding applicability and reusability in tap and river waters even in five-cycle reactions. This work provides a facile strategy for overcoming the negative effects of co-existing anions on heterogeneous PMS-activation based water treatment.
科研通智能强力驱动
Strongly Powered by AbleSci AI