Oxygen-doped defects modified C3N5 in enhanced molecule oxygen photoactivation for tetracycline hydrochloride degradation and H2O2 in situ production: Double pathways of 1O2 and O2–· high yield

氧气 盐酸四环素 降级(电信) 化学 原位 产量(工程) 分子 活性氧 盐酸盐 四环素 光化学 材料科学 有机化学 生物化学 电信 计算机科学 冶金 抗生素
作者
Tianye Wang,Ningning Song,Shuangxue Yao,Yiran Wang,Quanying Wang,Hongwen Yu
出处
期刊:Chemical Engineering Journal [Elsevier BV]
卷期号:495: 153379-153379 被引量:4
标识
DOI:10.1016/j.cej.2024.153379
摘要

The study aims to investigate the mechanism by which O-doped defect engineering in C3N5 enhances molecular oxygen photoactivation. A feasible one-step roasting method was adopted to synthesize a novel C3N5 with multiple O-doped defects sites (O-C3N5). The experimental characterizations and DFT analysis reveal that O atoms were doped into the in-plane structure of C3N5 to form O-doped defects located at both linked and terminal positions on triazine units. The O-doped defects transform C3N5 morphologies and diminish the band gap, favoring charge migration and electron accumulation under visible-light irradiation. Furthermore, O-doped defects improve the adsorption performance for molecular oxygen, which provides the prerequisite for photoactivating molecular oxygen. The prominent photoelectric property can high effectively photoactivate the adsorbed O2 to directly generate 1O2 in the energy transfer-mediated pathway and O2–· in the electron oxygen reduction reaction pathway. In addition, the well photoelectric property also facilitates the interconversion between 1O2 and O2–·, which enables diverse reaction applications to be achieved. Hence, the outstanding performance of O-C3N5 can be verified in photoactivating molecular oxygen for TC degradation and H2O2 in situ production. The results not only demonstrate the universality and feasibility of utilizing O-C3N5 photoactivating molecular oxygen for the advanced treatment of the complicated sewage, but also provide a comprehensive understanding on the enhanced molecule oxygen photoactivation of C3N5 through O-doped defects.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
flymouse完成签到,获得积分10
刚刚
wss发布了新的文献求助10
1秒前
2秒前
HH完成签到,获得积分10
2秒前
3秒前
3秒前
Purple发布了新的文献求助10
4秒前
wanci应助谦让的抽屉采纳,获得10
4秒前
5秒前
7秒前
簌落完成签到,获得积分10
7秒前
科研通AI5应助辛勤青亦采纳,获得20
8秒前
深情安青应助123采纳,获得10
9秒前
张育程发布了新的文献求助10
9秒前
10秒前
Purple完成签到,获得积分10
11秒前
thuuu完成签到,获得积分10
11秒前
zxvcbnm发布了新的文献求助10
11秒前
烟花应助彩色映雁采纳,获得10
12秒前
13秒前
橙子完成签到 ,获得积分10
13秒前
昏睡的蟠桃应助洛尘采纳,获得200
14秒前
李白白白完成签到,获得积分10
14秒前
夏末完成签到,获得积分10
15秒前
16秒前
16秒前
17秒前
19秒前
Nanpasen发布了新的文献求助10
19秒前
骆怀薇完成签到 ,获得积分10
20秒前
Wink14551发布了新的文献求助10
20秒前
hf发布了新的文献求助30
21秒前
zxvcbnm完成签到,获得积分10
21秒前
fanhuam发布了新的文献求助10
21秒前
22秒前
22秒前
23秒前
称心寒松发布了新的文献求助10
24秒前
NexusExplorer应助MHSCS采纳,获得10
24秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3740949
求助须知:如何正确求助?哪些是违规求助? 3283763
关于积分的说明 10036623
捐赠科研通 3000513
什么是DOI,文献DOI怎么找? 1646539
邀请新用户注册赠送积分活动 783771
科研通“疑难数据库(出版商)”最低求助积分说明 750427