Real time electronic-waste classification algorithms using the computer vision based on Convolutional Neural Network (CNN): Enhanced environmental incentives

卷积神经网络 计算机科学 激励 人工智能 人工神经网络 算法 机器学习 经济 微观经济学
作者
Prashant K. Sarswat,Rahulkumar Sunil Singh,Subbu Venkata Satyasri Harsha Pathapati
出处
期刊:Resources Conservation and Recycling [Elsevier]
卷期号:207: 107651-107651 被引量:4
标识
DOI:10.1016/j.resconrec.2024.107651
摘要

An innovative approach is needed to boost the economic value of e-waste by improving metal recovery and facilitating the separation of plastics and valuable metal components. Leveraging deep learning and computer vision technology offers a promising solution for automatically categorizing and sorting e-waste components like copper, printed circuit boards (PCB), steel, glass, and aluminum, presenting significant financial and environmental incentives for increased recycling efforts. In this instance, the real-time object identification algorithms YOLO 7 and 5 were used along with TensorFlow version 2.8.0. The e-waste dataset works incredibly well with TensorFlow and YOLO. For the detection of copper, PCBs, and plastic, the F1 values (F1 score is the harmonic mean of precision and recall; precision is the fraction of relevant instances among the retrieved instances whereas recall or sensitivity is the fraction of relevant instances that were retrieved) were as good as 1.0, whereas the score for steel and aluminum was 0.8. The mean average precision (mAP; for a set of queries, it is the mean of the average precision scores for each query) was 0.96 for all classes, with the highest precision for copper (0.99) followed by PCB (0.981). 240 e-waste objects were independently evaluated using the YOLO v7 model, achieving a remarkable ∼94 % prediction accuracy with a batch size of 16, ensuring robust performance. The real-time e-waste component detection was also done using video clips as well as webcam streaming. Deploying real-time e-waste object detection and sorting can significantly narrow the gap between e-waste accumulation and recycling rates, leading to reduced environmental strain and impact.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
滴歪歪完成签到,获得积分10
1秒前
1秒前
周小鱼完成签到 ,获得积分10
1秒前
科研通AI2S应助cmc12314采纳,获得10
1秒前
安雯发布了新的文献求助20
2秒前
2秒前
懒羊羊发布了新的文献求助30
2秒前
2秒前
老实的栾完成签到,获得积分10
2秒前
Sissi完成签到,获得积分10
3秒前
司空秋烟发布了新的文献求助10
4秒前
5秒前
hai发布了新的文献求助10
5秒前
zhmoon发布了新的文献求助10
6秒前
6秒前
顺心的海菡完成签到,获得积分10
7秒前
嘟嘟给嘟嘟的求助进行了留言
8秒前
阿瓦达索命完成签到,获得积分10
9秒前
橙子发布了新的文献求助10
9秒前
9秒前
10秒前
传奇3应助研友_LOoomL采纳,获得10
10秒前
10秒前
10秒前
王自信发布了新的文献求助10
11秒前
oilmelech发布了新的文献求助10
11秒前
11秒前
懒羊羊完成签到,获得积分10
12秒前
13秒前
李健的小迷弟应助Aurora采纳,获得10
14秒前
14秒前
大模型应助张晓玥采纳,获得10
15秒前
Jasper应助安雯采纳,获得30
15秒前
15秒前
ytzhang0587发布了新的文献求助30
15秒前
15秒前
16秒前
负责纲发布了新的文献求助10
16秒前
幸福鱼发布了新的文献求助10
17秒前
小罗飞飞飞完成签到 ,获得积分10
17秒前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 800
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3125050
求助须知:如何正确求助?哪些是违规求助? 2775348
关于积分的说明 7726300
捐赠科研通 2430919
什么是DOI,文献DOI怎么找? 1291479
科研通“疑难数据库(出版商)”最低求助积分说明 622162
版权声明 600344