可变系数
物理
孤子
变量(数学)
波浪和浅水
双线性形式
数学分析
数学物理
双线性插值
一维空间
量子力学
热力学
数学
非线性系统
统计
作者
Xing Lü,Liang-Li Zhang,Wen-Xiu Ma
出处
期刊:Physics of Fluids
[American Institute of Physics]
日期:2024-06-01
卷期号:36 (6)
被引量:8
摘要
Variable-coefficient equations can be used to describe certain phenomena when inhomogeneous media and nonuniform boundaries are taken into consideration. Describing the fluid dynamics of shallow-water wave in an open ocean, a (2 + 1)-dimensional generalized variable-coefficient Hirota–Satsuma–Ito equation is investigated in this paper. The integrability is first examined by the Painlevé analysis method. Secondly, the one-soliton and two-soliton solutions and lump solutions of the (2 + 1)-dimensional generalized variable-coefficient Hirota–Satsuma–Ito equations are derived by virtue of the Hirota bilinear method. In the exact solutions, parameter values and variable-coefficient functions are chosen and analyzed for different effects on the shallow-water waves.
科研通智能强力驱动
Strongly Powered by AbleSci AI