Harnessing the Collective Potential of Lanthanide Single-Atom Catalysts for Efficient CO2-to-CO Electroreduction

镧系元素 催化作用 法拉第效率 Atom(片上系统) 吸附 解吸 密度泛函理论 化学 光谱学 X射线光电子能谱 材料科学 纳米技术 电化学 结晶学 物理化学 化学工程 物理 计算化学 计算机科学 离子 电极 有机化学 量子力学 工程类 嵌入式系统
作者
Min Liu,Qiyou Wang,Tao Luo,Xueying Cao,Yujie Gong,Yuxiang Liu,Hongmei Li,Ying‐Rui Lu,Ting‐Shan Chan,Chao Ma,Kang Liu,Junwei Fu,Shiguo Zhang,Changxu Liu,Zhang Lin,Liyuan Chai
出处
期刊:Research Square - Research Square
标识
DOI:10.21203/rs.3.rs-4614446/v1
摘要

Abstract Single-atom catalysts (SACs) have received increasing attention due to their 100% atomic utilization efficiency. The electrochemical CO2 reduction reaction (CO2RR) to CO using SAC offers a promising approach for CO2 utilization, but achieving facile CO2 adsorption and CO desorption remains challenging for traditional SACs. Instead of singling out specific atoms, we propose a novel strategy utilizing atoms from the entire lanthanide (Ln) group to facilitate the CO2RR. Density functional theory calculations, operando spectroscopy, and X-ray absorption spectroscopy elucidate the bridging adsorption mechanism for a representative erbium (Er) single-atom catalyst. Remarkably, we realize a series of Ln SACs spanning 14 elements that exhibit CO Faradaic efficiencies exceeding 90%. The Er catalyst achieves an ultrahigh turnover frequency of ~ 130,000 h‒1, accompanying with a remarkable 42.6% full-cell energy efficiency and record-high 94% single-pass CO2 conversion efficiency. This unparalleled catalytic platform leverages the collective potential of the lanthanide group, introducing new possibilities for efficient CO2-to-CO conversion and beyond through the exploration of unique bonding motifs in single-atom catalysts.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研顺利完成签到,获得积分10
1秒前
1秒前
顾矜应助Xiaohu采纳,获得10
2秒前
CipherSage应助zunzun采纳,获得10
3秒前
打打应助阿关采纳,获得10
3秒前
4秒前
一只刺豚发布了新的文献求助10
5秒前
一一应助mono采纳,获得10
5秒前
苏比努尔发布了新的文献求助10
6秒前
6秒前
6秒前
科研通AI6应助dlfshr采纳,获得10
6秒前
科研通AI6应助bee采纳,获得10
6秒前
8秒前
小蘑菇应助me采纳,获得10
8秒前
8秒前
雪sung完成签到,获得积分10
8秒前
量子星尘发布了新的文献求助10
8秒前
sunc发布了新的文献求助10
9秒前
as发布了新的文献求助10
10秒前
uon发布了新的文献求助30
10秒前
11秒前
11秒前
斩荆披棘发布了新的文献求助10
11秒前
11秒前
萝卜发布了新的文献求助10
12秒前
13秒前
13秒前
慕青应助gao456789采纳,获得10
13秒前
13秒前
苏苏完成签到 ,获得积分10
13秒前
吉尔吉斯斯坦完成签到 ,获得积分10
13秒前
14秒前
wy发布了新的文献求助10
14秒前
nienie发布了新的文献求助10
14秒前
bkagyin应助lonely陈采纳,获得10
15秒前
一一应助wise111采纳,获得20
15秒前
pilgrim发布了新的文献求助10
16秒前
chen完成签到,获得积分10
16秒前
mmol发布了新的文献求助10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5648325
求助须知:如何正确求助?哪些是违规求助? 4775345
关于积分的说明 15043906
捐赠科研通 4807336
什么是DOI,文献DOI怎么找? 2570747
邀请新用户注册赠送积分活动 1527484
关于科研通互助平台的介绍 1486437