镧系元素
催化作用
法拉第效率
Atom(片上系统)
吸附
解吸
密度泛函理论
化学
光谱学
X射线光电子能谱
材料科学
纳米技术
电化学
结晶学
物理化学
化学工程
物理
计算化学
计算机科学
离子
电极
有机化学
量子力学
工程类
嵌入式系统
作者
Min Liu,Qiyou Wang,Tao Luo,Xueying Cao,Yujie Gong,Yuxiang Liu,Hongmei Li,Ying‐Rui Lu,Ting‐Shan Chan,Chao Ma,Kang Liu,Junwei Fu,Shiguo Zhang,Changxu Liu,Zhang Lin,Liyuan Chai
出处
期刊:Research Square - Research Square
日期:2024-07-01
标识
DOI:10.21203/rs.3.rs-4614446/v1
摘要
Abstract Single-atom catalysts (SACs) have received increasing attention due to their 100% atomic utilization efficiency. The electrochemical CO2 reduction reaction (CO2RR) to CO using SAC offers a promising approach for CO2 utilization, but achieving facile CO2 adsorption and CO desorption remains challenging for traditional SACs. Instead of singling out specific atoms, we propose a novel strategy utilizing atoms from the entire lanthanide (Ln) group to facilitate the CO2RR. Density functional theory calculations, operando spectroscopy, and X-ray absorption spectroscopy elucidate the bridging adsorption mechanism for a representative erbium (Er) single-atom catalyst. Remarkably, we realize a series of Ln SACs spanning 14 elements that exhibit CO Faradaic efficiencies exceeding 90%. The Er catalyst achieves an ultrahigh turnover frequency of ~ 130,000 h‒1, accompanying with a remarkable 42.6% full-cell energy efficiency and record-high 94% single-pass CO2 conversion efficiency. This unparalleled catalytic platform leverages the collective potential of the lanthanide group, introducing new possibilities for efficient CO2-to-CO conversion and beyond through the exploration of unique bonding motifs in single-atom catalysts.
科研通智能强力驱动
Strongly Powered by AbleSci AI