Comparing visual co-registration methods for UAV and satellite RGB imagery with semantic filtering of key points

计算机科学 钥匙(锁) 计算机视觉 人工智能 RGB颜色模型 卫星 卫星图像 遥感 地理 工程类 计算机安全 航空航天工程
作者
Trevor M. Bajkowski,J. Alex Hurt,Christopher W. Scully,James M. Keller,Samantha S. Carley,Grant J. Scott,Stanton R. Price
标识
DOI:10.1117/12.3013504
摘要

Image-to-image correspondence is important in numerous remote sensing applications ranging from image mosaicking to 3D reconstruction. While many local features used for these methods aim for robustness to changes in viewpoint/illumination, recent studies have suggested that traditional feature extractors may lack stability in multi-temporal applications. We have discovered that this is especially true in multi-modal sensor contexts, such as corresponding high-resolution UAS images to broad area overhead imagery (e.g., satellite images). This paper explores the performance of various local feature extraction methods as they pertain to image-to-image correspondence in scenes captured at different times, with different sensors. Experiments here specifically evaluate co-registration between low-altitude, nadir UAV frames, and imagery collected from satellite sources. Due to challenges in the localization of imagery with significantly different resolutions, spatial extents, and spectral characteristics, two further studies are presented beyond baseline evaluation. First, images undergo histogram matching to better understand how the discussed algorithms' performance changes as image characteristics become more or less similar. Secondly, experiments are performed where key point feature matches are refined with information taken from segmentation maps inferred by pre-trained segmentation models. These methods are evaluated in regions where satellite and UAV images have been collected at different times, with spatial correspondences being hand-labeled.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yibaozhangfa完成签到,获得积分10
2秒前
11发布了新的文献求助30
2秒前
肝不动的牛马完成签到,获得积分10
2秒前
ding应助ruqinmq采纳,获得10
2秒前
桐桐应助Kleen采纳,获得10
2秒前
maoyi发布了新的文献求助10
2秒前
小luc发布了新的文献求助10
3秒前
李瑶函完成签到,获得积分10
3秒前
AN完成签到,获得积分10
3秒前
baomingqiu完成签到 ,获得积分10
3秒前
15940203654完成签到 ,获得积分10
3秒前
斯文败类应助举个栗子8采纳,获得10
3秒前
adou完成签到,获得积分20
4秒前
bjyx完成签到 ,获得积分10
4秒前
ks完成签到,获得积分10
4秒前
追寻翩跹完成签到,获得积分10
4秒前
tigger发布了新的文献求助10
4秒前
du完成签到 ,获得积分10
5秒前
Attendre完成签到 ,获得积分10
5秒前
dida完成签到,获得积分10
6秒前
ler完成签到,获得积分20
6秒前
无语的沛春完成签到,获得积分10
6秒前
周周完成签到 ,获得积分10
6秒前
小蚂蚁完成签到,获得积分10
6秒前
6秒前
甄昕完成签到,获得积分10
7秒前
香蕉觅云应助优雅访曼采纳,获得10
7秒前
整齐醉冬完成签到,获得积分10
7秒前
静静小可爱完成签到,获得积分10
7秒前
8秒前
长得像杨蕃应助zzzzlll采纳,获得10
8秒前
取昵称好难完成签到,获得积分10
8秒前
9秒前
菩提石头完成签到,获得积分20
9秒前
hehe完成签到,获得积分10
9秒前
10秒前
小luc完成签到,获得积分10
11秒前
尤水绿完成签到,获得积分10
11秒前
vv1223发布了新的文献求助20
12秒前
coke完成签到,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573758
求助须知:如何正确求助?哪些是违规求助? 4660031
关于积分的说明 14727408
捐赠科研通 4599888
什么是DOI,文献DOI怎么找? 2524520
邀请新用户注册赠送积分活动 1494877
关于科研通互助平台的介绍 1464977