Transformer enables ion transport behavior evolution and conductivity regulation for solid electrolyte

材料科学 电解质 电导率 离子电导率 离子 导电体 快离子导体 化学物理 纳米技术 电池(电) 电极 热力学 物理化学 物理 有机化学 复合材料 功率(物理) 化学
作者
Kehao Tao,Zhilong Wang,Zhoujie Lao,An Chen,Yanqiang Han,Lei Shi,Guangmin Zhou,Jinjin Li
出处
期刊:Energy Storage Materials [Elsevier BV]
卷期号:71: 103555-103555 被引量:3
标识
DOI:10.1016/j.ensm.2024.103555
摘要

Ab initio molecular dynamics (AIMD) is an important technique for studying ion transport within solid electrolyte and interface effects between electrode and electrolyte, which is particularly critical for the rational design of new energy materials. However, AIMD is limited by the high-cost density functional theory (DFT) solution process and is unable to reach the time scale of the entire dynamic simulation, resulting in time-consuming AIMD calculations and a considerable scarcity of AIMD-based conductor data. Here, we propose a sequence relational large model based on transformer (T-AIMD) to infer ion diffusion from mean square displacement sequence data and hybrid multi-source material descriptor. T-AIMD successfully learns the whole long-range atomic diffusion to predict the ionic conductivity (σ) of any ion in any crystal structure to find fast-ion conductors, thus reducing the cost of AIMD simulation by a factor of 100. Using T-AIMD, we built the largest database of mixed ion conductors, and the σ of representative solid electrolytes has been successfully validated in previous battery experiments. Further, the manufactured solid-state battery with the predicted promising electrolyte exhibits almost no obvious capacity decay after 50 cycles with a high initial specific capacity of 1270 mAh g−1, which is promising to help devices work in extreme environments while guaranteeing battery life. By speeding up the prediction time of AIMD, the proposed T-AIMD opens the door for scientists to explore the atomic and molecular behaviors of other molecules/materials on long time scales, and will ultimately benefit the exploration of other key scientific questions in the energy field.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
哈尼发布了新的文献求助10
刚刚
zhanghaoxiang完成签到,获得积分20
1秒前
wjw给wjw的求助进行了留言
1秒前
1秒前
小蚊子完成签到,获得积分0
1秒前
852应助和谐的火龙果采纳,获得10
2秒前
2秒前
明理的幻梦完成签到,获得积分20
2秒前
现代以云发布了新的文献求助10
2秒前
3秒前
3秒前
燕尔蓝发布了新的文献求助10
3秒前
CHENCHENG发布了新的文献求助10
3秒前
4秒前
无昵称发布了新的文献求助10
4秒前
4秒前
DJN0717完成签到,获得积分10
4秒前
4秒前
4秒前
highrain发布了新的文献求助10
5秒前
zhanghaoxiang发布了新的文献求助10
5秒前
5秒前
5秒前
JasonLee发布了新的文献求助10
6秒前
6秒前
优秀的dd完成签到 ,获得积分10
7秒前
慕容博发布了新的文献求助10
7秒前
Relax发布了新的文献求助10
8秒前
9秒前
星辰大海应助刘闪闪采纳,获得10
9秒前
小蚊子发布了新的文献求助10
10秒前
10秒前
SciGPT应助给大佬递茶采纳,获得10
11秒前
wang发布了新的文献求助10
11秒前
CHENCHENG完成签到 ,获得积分10
12秒前
LionontheMars完成签到,获得积分10
13秒前
13秒前
13秒前
小二郎应助FLMXene采纳,获得10
14秒前
14秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Picture Books with Same-sex Parented Families: Unintentional Censorship 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3970802
求助须知:如何正确求助?哪些是违规求助? 3515474
关于积分的说明 11178714
捐赠科研通 3250627
什么是DOI,文献DOI怎么找? 1795390
邀请新用户注册赠送积分活动 875818
科研通“疑难数据库(出版商)”最低求助积分说明 805183