Error detection for radiotherapy planning validation based on deep learning networks

计算机科学 稳健性(进化) 质量保证 人工智能 放射治疗计划 深度学习 机器学习 模式识别(心理学) 放射治疗 医学 生物化学 化学 外部质量评估 病理 内科学 基因
作者
Shupeng Liu,Jianhui Ma,Fan Tang,Yuqi Liang,Yanning Li,Zihao Li,Tingting Wang,Meijuan Zhou
出处
期刊:Journal of Applied Clinical Medical Physics [Wiley]
卷期号:25 (8) 被引量:1
标识
DOI:10.1002/acm2.14372
摘要

Abstract Background Quality assurance (QA) of patient‐specific treatment plans for intensity‐modulated radiation therapy (IMRT) and volumetric modulated arc therapy (VMAT) necessitates prior validation. However, the standard methodology exhibits deficiencies and lacks sensitivity in the analysis of positional dose distribution data, leading to difficulties in accurately identifying reasons for plan verification failure. This issue complicates and impedes the efficiency of QA tasks. Purpose The primary aim of this research is to utilize deep learning algorithms for the extraction of 3D dose distribution maps and the creation of a predictive model for error classification across multiple machine models, treatment methodologies, and tumor locations. Method We devised five categories of validation plans (normal, gantry error, collimator error, couch error, and dose error), conforming to tolerance limits of different accuracy levels and employing 3D dose distribution data from a sample of 94 tumor patients. A CNN model was then constructed to predict the diverse error types, with predictions compared against the gamma pass rate (GPR) standard employing distinct thresholds (3%, 3 mm; 3%, 2 mm; 2%, 2 mm) to evaluate the model's performance. Furthermore, we appraised the model's robustness by assessing its functionality across diverse accelerators. Results The accuracy, precision, recall, and F1 scores of CNN model performance were 0.907, 0.925, 0.907, and 0.908, respectively. Meanwhile, the performance on another device is 0.900, 0.918, 0.900, and 0.898. In addition, compared to the GPR method, the CNN model achieved better results in predicting different types of errors. Conclusion When juxtaposed with the GPR methodology, the CNN model exhibits superior predictive capability for classification in the validation of the radiation therapy plan on different devices. By using this model, the plan validation failures can be detected more rapidly and efficiently, minimizing the time required for QA tasks and serving as a valuable adjunct to overcome the constraints of the GPR method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
phil完成签到,获得积分10
1秒前
含蓄的赛君完成签到,获得积分10
2秒前
xixi发布了新的文献求助10
4秒前
zyh完成签到 ,获得积分10
5秒前
5秒前
6秒前
6秒前
7秒前
8秒前
积极擎汉完成签到,获得积分10
8秒前
10秒前
苏苏苏完成签到,获得积分10
10秒前
10秒前
健康的网络完成签到,获得积分10
11秒前
12秒前
无花果应助勤奋伟泽采纳,获得30
12秒前
苏苏苏发布了新的文献求助10
14秒前
15秒前
健康的小鸽子完成签到 ,获得积分10
15秒前
小安完成签到,获得积分10
15秒前
咸鱼完成签到,获得积分10
15秒前
大气的半双完成签到,获得积分10
16秒前
微笑语山发布了新的文献求助10
16秒前
李欣宇完成签到,获得积分20
16秒前
爱静静应助daoketuo采纳,获得10
18秒前
爱静静应助daoketuo采纳,获得10
18秒前
跳跃的老鼠完成签到,获得积分10
18秒前
慕青应助碧蓝的以亦采纳,获得10
19秒前
麦田里的守望者完成签到,获得积分10
21秒前
很好发布了新的文献求助10
21秒前
lili完成签到 ,获得积分10
23秒前
23秒前
humblelucas发布了新的文献求助10
23秒前
渡江发布了新的文献求助30
24秒前
Regulus完成签到 ,获得积分10
25秒前
水水的完成签到 ,获得积分10
25秒前
不渝发布了新的文献求助10
26秒前
渡月桥完成签到,获得积分10
26秒前
SciGPT应助Wonder罗采纳,获得10
26秒前
情怀应助科研通管家采纳,获得20
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Encyclopedia of Materials: Plastics and Polymers 1000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
Handbook of Social and Emotional Learning, Second Edition 900
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4923236
求助须知:如何正确求助?哪些是违规求助? 4193683
关于积分的说明 13025807
捐赠科研通 3965586
什么是DOI,文献DOI怎么找? 2173403
邀请新用户注册赠送积分活动 1190992
关于科研通互助平台的介绍 1100532