Error detection for radiotherapy planning validation based on deep learning networks

计算机科学 稳健性(进化) 质量保证 人工智能 放射治疗计划 深度学习 机器学习 模式识别(心理学) 放射治疗 医学 生物化学 化学 外部质量评估 病理 内科学 基因
作者
Shupeng Liu,Jianhui Ma,Fan Tang,Yuqi Liang,Yanning Li,Zihao Li,Tingting Wang,Meijuan Zhou
出处
期刊:Journal of Applied Clinical Medical Physics [Wiley]
卷期号:25 (8) 被引量:1
标识
DOI:10.1002/acm2.14372
摘要

Abstract Background Quality assurance (QA) of patient‐specific treatment plans for intensity‐modulated radiation therapy (IMRT) and volumetric modulated arc therapy (VMAT) necessitates prior validation. However, the standard methodology exhibits deficiencies and lacks sensitivity in the analysis of positional dose distribution data, leading to difficulties in accurately identifying reasons for plan verification failure. This issue complicates and impedes the efficiency of QA tasks. Purpose The primary aim of this research is to utilize deep learning algorithms for the extraction of 3D dose distribution maps and the creation of a predictive model for error classification across multiple machine models, treatment methodologies, and tumor locations. Method We devised five categories of validation plans (normal, gantry error, collimator error, couch error, and dose error), conforming to tolerance limits of different accuracy levels and employing 3D dose distribution data from a sample of 94 tumor patients. A CNN model was then constructed to predict the diverse error types, with predictions compared against the gamma pass rate (GPR) standard employing distinct thresholds (3%, 3 mm; 3%, 2 mm; 2%, 2 mm) to evaluate the model's performance. Furthermore, we appraised the model's robustness by assessing its functionality across diverse accelerators. Results The accuracy, precision, recall, and F1 scores of CNN model performance were 0.907, 0.925, 0.907, and 0.908, respectively. Meanwhile, the performance on another device is 0.900, 0.918, 0.900, and 0.898. In addition, compared to the GPR method, the CNN model achieved better results in predicting different types of errors. Conclusion When juxtaposed with the GPR methodology, the CNN model exhibits superior predictive capability for classification in the validation of the radiation therapy plan on different devices. By using this model, the plan validation failures can be detected more rapidly and efficiently, minimizing the time required for QA tasks and serving as a valuable adjunct to overcome the constraints of the GPR method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
走四方应助没树的叶子采纳,获得10
刚刚
搜集达人应助waypeter采纳,获得10
1秒前
天地一沙鸥完成签到 ,获得积分10
1秒前
猫猫头关注了科研通微信公众号
1秒前
Yurrrrt完成签到,获得积分10
2秒前
依依完成签到,获得积分10
3秒前
暴富完成签到,获得积分10
4秒前
失眠傲白完成签到,获得积分0
5秒前
6秒前
Yy杨优秀完成签到 ,获得积分10
6秒前
粗心小熊猫完成签到,获得积分10
6秒前
专一的凝荷完成签到,获得积分10
7秒前
脑残骑士老张完成签到,获得积分10
7秒前
Shirely完成签到,获得积分10
8秒前
若水完成签到,获得积分10
8秒前
Hoper完成签到,获得积分10
8秒前
perovskite完成签到,获得积分10
8秒前
Yanping完成签到,获得积分10
9秒前
9秒前
彭宝淦完成签到,获得积分10
10秒前
LYB1a吕完成签到,获得积分10
10秒前
10秒前
沐曦完成签到,获得积分10
11秒前
11秒前
xiaofeng5838完成签到,获得积分10
12秒前
13秒前
Niko完成签到,获得积分10
13秒前
Zetlynn完成签到,获得积分10
14秒前
百里丹珍完成签到,获得积分10
14秒前
衬衫完成签到,获得积分10
15秒前
怕孤独的香菇完成签到 ,获得积分10
15秒前
spring完成签到 ,获得积分10
15秒前
丘比特应助xuzijian采纳,获得10
15秒前
zzz完成签到,获得积分10
15秒前
沐风完成签到,获得积分20
16秒前
自由饼干完成签到,获得积分10
16秒前
mr_beard完成签到 ,获得积分10
16秒前
Parsifal完成签到,获得积分10
16秒前
幸福广山完成签到,获得积分20
16秒前
xunl完成签到,获得积分10
16秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Residual Stress Measurement by X-Ray Diffraction, 2003 Edition HS-784/2003 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3950088
求助须知:如何正确求助?哪些是违规求助? 3495487
关于积分的说明 11077296
捐赠科研通 3226021
什么是DOI,文献DOI怎么找? 1783386
邀请新用户注册赠送积分活动 867687
科研通“疑难数据库(出版商)”最低求助积分说明 800855