Error detection for radiotherapy planning validation based on deep learning networks

计算机科学 稳健性(进化) 质量保证 人工智能 放射治疗计划 深度学习 机器学习 模式识别(心理学) 放射治疗 医学 生物化学 化学 外部质量评估 病理 内科学 基因
作者
S. Liu,Jinghong Ma,Fan Tang,Y. F. Liang,Yanning Li,Zihao Li,Tingting Wang,Meijuan Zhou
出处
期刊:Journal of Applied Clinical Medical Physics [Wiley]
标识
DOI:10.1002/acm2.14372
摘要

Abstract Background Quality assurance (QA) of patient‐specific treatment plans for intensity‐modulated radiation therapy (IMRT) and volumetric modulated arc therapy (VMAT) necessitates prior validation. However, the standard methodology exhibits deficiencies and lacks sensitivity in the analysis of positional dose distribution data, leading to difficulties in accurately identifying reasons for plan verification failure. This issue complicates and impedes the efficiency of QA tasks. Purpose The primary aim of this research is to utilize deep learning algorithms for the extraction of 3D dose distribution maps and the creation of a predictive model for error classification across multiple machine models, treatment methodologies, and tumor locations. Method We devised five categories of validation plans (normal, gantry error, collimator error, couch error, and dose error), conforming to tolerance limits of different accuracy levels and employing 3D dose distribution data from a sample of 94 tumor patients. A CNN model was then constructed to predict the diverse error types, with predictions compared against the gamma pass rate (GPR) standard employing distinct thresholds (3%, 3 mm; 3%, 2 mm; 2%, 2 mm) to evaluate the model's performance. Furthermore, we appraised the model's robustness by assessing its functionality across diverse accelerators. Results The accuracy, precision, recall, and F1 scores of CNN model performance were 0.907, 0.925, 0.907, and 0.908, respectively. Meanwhile, the performance on another device is 0.900, 0.918, 0.900, and 0.898. In addition, compared to the GPR method, the CNN model achieved better results in predicting different types of errors. Conclusion When juxtaposed with the GPR methodology, the CNN model exhibits superior predictive capability for classification in the validation of the radiation therapy plan on different devices. By using this model, the plan validation failures can be detected more rapidly and efficiently, minimizing the time required for QA tasks and serving as a valuable adjunct to overcome the constraints of the GPR method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
欻欻发布了新的文献求助10
刚刚
1秒前
1秒前
温柔的冰香完成签到,获得积分20
1秒前
2秒前
阳光he完成签到,获得积分10
2秒前
3秒前
3秒前
阿kkk发布了新的文献求助10
4秒前
4秒前
俏皮含烟完成签到,获得积分10
5秒前
积极的硬币完成签到,获得积分10
5秒前
7秒前
7秒前
弄香完成签到,获得积分10
7秒前
7秒前
Tim完成签到 ,获得积分10
8秒前
西北望发布了新的文献求助10
8秒前
服部平次完成签到,获得积分10
8秒前
arya发布了新的文献求助10
9秒前
siso发布了新的文献求助10
10秒前
妮子完成签到,获得积分10
10秒前
Aurora发布了新的文献求助10
10秒前
阿kkk完成签到,获得积分10
11秒前
11秒前
小倪完成签到 ,获得积分10
12秒前
13秒前
西北望完成签到,获得积分10
13秒前
酷波er应助含蓄的问寒采纳,获得10
14秒前
星辰大海应助QXR采纳,获得10
14秒前
14秒前
欻欻完成签到,获得积分10
14秒前
CodeCraft应助to高坚果采纳,获得10
14秒前
jiangjiang完成签到 ,获得积分10
15秒前
16秒前
薰硝壤应助弄香采纳,获得10
16秒前
小松发布了新的文献求助10
16秒前
16秒前
17秒前
LinglongCai完成签到 ,获得积分10
18秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3141156
求助须知:如何正确求助?哪些是违规求助? 2792103
关于积分的说明 7801577
捐赠科研通 2448294
什么是DOI,文献DOI怎么找? 1302503
科研通“疑难数据库(出版商)”最低求助积分说明 626591
版权声明 601237