Error detection for radiotherapy planning validation based on deep learning networks

计算机科学 稳健性(进化) 质量保证 人工智能 放射治疗计划 深度学习 机器学习 模式识别(心理学) 放射治疗 医学 生物化学 化学 外部质量评估 病理 内科学 基因
作者
Shupeng Liu,Jianhui Ma,Fan Tang,Yuqi Liang,Yanning Li,Zihao Li,Tingting Wang,Meijuan Zhou
出处
期刊:Journal of Applied Clinical Medical Physics [Wiley]
卷期号:25 (8) 被引量:1
标识
DOI:10.1002/acm2.14372
摘要

Abstract Background Quality assurance (QA) of patient‐specific treatment plans for intensity‐modulated radiation therapy (IMRT) and volumetric modulated arc therapy (VMAT) necessitates prior validation. However, the standard methodology exhibits deficiencies and lacks sensitivity in the analysis of positional dose distribution data, leading to difficulties in accurately identifying reasons for plan verification failure. This issue complicates and impedes the efficiency of QA tasks. Purpose The primary aim of this research is to utilize deep learning algorithms for the extraction of 3D dose distribution maps and the creation of a predictive model for error classification across multiple machine models, treatment methodologies, and tumor locations. Method We devised five categories of validation plans (normal, gantry error, collimator error, couch error, and dose error), conforming to tolerance limits of different accuracy levels and employing 3D dose distribution data from a sample of 94 tumor patients. A CNN model was then constructed to predict the diverse error types, with predictions compared against the gamma pass rate (GPR) standard employing distinct thresholds (3%, 3 mm; 3%, 2 mm; 2%, 2 mm) to evaluate the model's performance. Furthermore, we appraised the model's robustness by assessing its functionality across diverse accelerators. Results The accuracy, precision, recall, and F1 scores of CNN model performance were 0.907, 0.925, 0.907, and 0.908, respectively. Meanwhile, the performance on another device is 0.900, 0.918, 0.900, and 0.898. In addition, compared to the GPR method, the CNN model achieved better results in predicting different types of errors. Conclusion When juxtaposed with the GPR methodology, the CNN model exhibits superior predictive capability for classification in the validation of the radiation therapy plan on different devices. By using this model, the plan validation failures can be detected more rapidly and efficiently, minimizing the time required for QA tasks and serving as a valuable adjunct to overcome the constraints of the GPR method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
buno应助88采纳,获得10
1秒前
2秒前
三千世界完成签到,获得积分10
2秒前
2秒前
愉快的访旋完成签到,获得积分10
3秒前
Alpha完成签到,获得积分10
4秒前
大大发布了新的文献求助30
4秒前
翠翠发布了新的文献求助10
5秒前
半山发布了新的文献求助10
6秒前
6秒前
天天快乐应助CO2采纳,获得10
6秒前
隐形曼青应助junzilan采纳,获得10
7秒前
Dksido发布了新的文献求助10
7秒前
8秒前
思源应助卓哥采纳,获得10
8秒前
mysci完成签到,获得积分10
11秒前
12秒前
Quzhengkai发布了新的文献求助10
13秒前
13秒前
14秒前
落寞晓灵完成签到,获得积分10
14秒前
ORAzzz应助翠翠采纳,获得20
15秒前
zoe完成签到,获得积分10
15秒前
习习应助学术小白采纳,获得10
15秒前
16秒前
17秒前
tianny关注了科研通微信公众号
18秒前
18秒前
CO2发布了新的文献求助10
18秒前
桐桐应助zhangscience采纳,获得10
19秒前
求助发布了新的文献求助10
20秒前
buno应助zoe采纳,获得10
21秒前
junzilan发布了新的文献求助10
21秒前
21秒前
细品岁月完成签到 ,获得积分10
21秒前
细心书蕾完成签到 ,获得积分10
22秒前
无花果应助l11x29采纳,获得10
24秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808