清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Mapping the landscape of histomorphological cancer phenotypes using self-supervised learning on unannotated pathology slides

表型 数字化病理学 计算生物学 人工智能 免疫分型 表型筛选 病理 生物 计算机科学 医学 基因 遗传学 流式细胞术
作者
Adalberto Claudio Quiros,Nicolas Coudray,Anna Yeaton,Xinyu Yang,Bojing Liu,Hortense Le,Luis Chiriboga,Afreen Karimkhan,Navneet Narula,David A. Moore,Christopher Y. Park,Harvey I. Pass,André L. Moreira,John Le Quesne,Aristotelis Tsirigos,Ke Yuan
出处
期刊:Nature Communications [Springer Nature]
卷期号:15 (1): 4596-4596 被引量:41
标识
DOI:10.1038/s41467-024-48666-7
摘要

Abstract Cancer diagnosis and management depend upon the extraction of complex information from microscopy images by pathologists, which requires time-consuming expert interpretation prone to human bias. Supervised deep learning approaches have proven powerful, but are inherently limited by the cost and quality of annotations used for training. Therefore, we present Histomorphological Phenotype Learning, a self-supervised methodology requiring no labels and operating via the automatic discovery of discriminatory features in image tiles. Tiles are grouped into morphologically similar clusters which constitute an atlas of histomorphological phenotypes (HP-Atlas), revealing trajectories from benign to malignant tissue via inflammatory and reactive phenotypes. These clusters have distinct features which can be identified using orthogonal methods, linking histologic, molecular and clinical phenotypes. Applied to lung cancer, we show that they align closely with patient survival, with histopathologically recognised tumor types and growth patterns, and with transcriptomic measures of immunophenotype. These properties are maintained in a multi-cancer study.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
帅气善斓应助soft软心曲奇采纳,获得10
3秒前
Majarichy完成签到,获得积分20
5秒前
9秒前
科研通AI6应助科研通管家采纳,获得10
9秒前
Criminology34应助科研通管家采纳,获得10
9秒前
Criminology34应助科研通管家采纳,获得10
9秒前
Criminology34应助科研通管家采纳,获得10
9秒前
cgq完成签到,获得积分10
12秒前
嘻嘻完成签到,获得积分10
15秒前
田様应助cgq采纳,获得10
17秒前
lod完成签到,获得积分10
23秒前
邓筠颐发布了新的文献求助10
42秒前
正直的沛凝完成签到,获得积分10
42秒前
默默问芙完成签到,获得积分10
53秒前
53秒前
我很厉害的1q完成签到,获得积分10
1分钟前
游泳池完成签到,获得积分10
1分钟前
qianzhihe2完成签到,获得积分10
1分钟前
soft软心曲奇完成签到,获得积分20
1分钟前
Emma完成签到 ,获得积分10
1分钟前
小红书求接接接接一篇完成签到,获得积分10
1分钟前
Karl完成签到,获得积分10
1分钟前
wood完成签到,获得积分10
1分钟前
1分钟前
胡可完成签到 ,获得积分10
1分钟前
Yuki完成签到 ,获得积分10
1分钟前
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
2分钟前
Arthur完成签到,获得积分10
2分钟前
xiaoxiaohai完成签到 ,获得积分10
2分钟前
zyjsunye完成签到 ,获得积分10
2分钟前
卷心菜完成签到 ,获得积分10
2分钟前
阿郭发布了新的文献求助10
2分钟前
小学徒完成签到 ,获得积分10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5706695
求助须知:如何正确求助?哪些是违规求助? 5176707
关于积分的说明 15247207
捐赠科研通 4860132
什么是DOI,文献DOI怎么找? 2608401
邀请新用户注册赠送积分活动 1559299
关于科研通互助平台的介绍 1517089