铜绿微囊藻
水蚤
大型水蚤
生物
盔形溞
食品科学
植物
蓝藻
微生物学
化学
枝角类
毒性
细菌
生态学
鳃足类
浮游动物
有机化学
遗传学
作者
Gwiwoong Nam,Gersan An,Joorim Na,Jinho Jung
标识
DOI:10.1016/j.envpol.2024.124144
摘要
Infochemicals refer to chemicals responsible for information exchange between organisms. We evaluated the effects of Daphnia magna and Daphnia galeata infochemicals on Microcystis aeruginosa for 15d. The Daphnia infochemicals were obtained from spent medium after culturing Daphnia in Elendt M4 medium for 48 h. Both Daphnia infochemicals significantly increased (p <0.05) the intracellular reactive oxygen species level and microcystin-LR concentration in M. aeruginosa. This cellular effect increased colony formation of M. aeruginosa, thereby inhibiting the growth of M. aeruginosa. D. galeata infochemicals provoked significantly greater (p <0.05) adverse effects on M. aeruginosa than those of D. magna infochemicals, which were further exaggerated by pre-exposure of Daphnia to M. aeruginosa. This result seems to be related to the different compositions and concentrations of Daphnia infochemicals. Several Daphnia infochemicals, such as methyl ferulate, cyclohexanone, 3, 5-dimethyl, hexanedioic acid, and bis(2-ethylhexyl) ester, showed a high correlation with M. aeruginosa cell concentration (| r | >0.6), suggesting that they may play a key role in controlling harmful cyanobacteria. Additionally, pre-exposure of D. magna and D. galeata to M. aeruginosa produced oleic acid, methyl ester, and n-hexadecanoic acid, with a highly correlation with M. aeruginosa cell concentration (| r | >0.6). p-tolyl acetate and linoleic acid were detected only in the pre-exposed D. galeata infochemicals. These findings suggest that some of Daphnia infochemicals identified in this study can be a promising tool to control M. aeruginosa growth. However, further studies are required to verify the specific actions of these infochemicals against cyanobacteria.
科研通智能强力驱动
Strongly Powered by AbleSci AI