Identification of patients with internet gaming disorder via a radiomics-based machine learning model of subcortical structures in high-resolution T1-weighted MRI

无线电技术 鉴定(生物学) 人工智能 互联网 高分辨率 计算机科学 分辨率(逻辑) 机器学习 心理学 万维网 生物 地理 遥感 植物
作者
Li Wang,Li Zhou,Shengdan Liu,Yurong Zheng,Qianhan Liu,Minglin Yu,Xiaofei Lu,Wei Lei,Guangxiang Chen
出处
期刊:Progress in Neuro-psychopharmacology & Biological Psychiatry [Elsevier BV]
卷期号:133: 111026-111026 被引量:1
标识
DOI:10.1016/j.pnpbp.2024.111026
摘要

It is of vital importance to establish an objective and reliable model to facilitate the early diagnosis and intervention of internet gaming disorder (IGD). A total of 133 patients with IGD and 110 healthy controls (HCs) were included. We extracted radiomic features of subcortical structures in high-resolution T1-weighted MRI. Different combinations of four feature selection methods (analysis of variance, Kruskal–Wallis, recursive feature elimination and relief) and ten classification algorithms were used to identify the most robust combined models for distinguishing IGD patients from HCs. Furthermore, a nomogram incorporating radiomic signatures and independent clinical factors was developed. Calibration curve and decision curve analyses were used to evaluate the nomogram. The combination of analysis of variance selector and logistic regression classifier identified that the radiomic model constructed with 20 features from the right caudate nucleus and amygdala showed better IGD screening performance. The radiomic model produced good areas under the curves (AUCs) in the training, validation and test cohorts (AUCs of 0.961, 0.903 and 0.895, respectively). In addition, sex, internet addiction test scores and radiomic scores were included in the nomogram as independent risk factors for IGD. Analysis of the correction curve and decision curve showed that the clinical-radiomic model has good reliability (C-index: 0.987). The nomogram incorporating radiomic features of subcortical structures and clinical characteristics achieved satisfactory classification performance and could serve as an effective tool for distinguishing IGD patients from HCs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
luozejun完成签到,获得积分10
刚刚
ycp完成签到,获得积分10
1秒前
dawang完成签到 ,获得积分10
1秒前
洁净的智宸完成签到 ,获得积分10
1秒前
zhaopeipei发布了新的文献求助10
1秒前
eternity136完成签到,获得积分10
1秒前
2秒前
SciGPT应助zz采纳,获得10
2秒前
科研欣路完成签到,获得积分10
3秒前
bulingbuling发布了新的文献求助10
4秒前
斯文败类应助Y123采纳,获得10
4秒前
eternity136发布了新的文献求助10
4秒前
5秒前
共享精神应助zzq778采纳,获得10
5秒前
5秒前
5秒前
小辉发布了新的文献求助10
7秒前
跳跃小伙完成签到 ,获得积分10
7秒前
7秒前
7秒前
7秒前
laber应助kento采纳,获得50
8秒前
Jackcaosky完成签到 ,获得积分10
8秒前
午夜咖啡香完成签到,获得积分20
8秒前
小二郎应助冷静采纳,获得10
9秒前
胡航航完成签到,获得积分10
9秒前
大吴克发布了新的文献求助10
11秒前
精明寒蕾完成签到,获得积分10
11秒前
A宇完成签到,获得积分10
12秒前
白兰鸽发布了新的文献求助10
12秒前
jielailai完成签到,获得积分10
12秒前
yangkunmedical完成签到,获得积分10
14秒前
斯文败类应助hahaha123213123采纳,获得10
14秒前
核桃发布了新的文献求助10
14秒前
今天你开组会了吗完成签到,获得积分10
14秒前
璐璐完成签到 ,获得积分10
15秒前
ZZ完成签到,获得积分10
16秒前
宫宛儿完成签到,获得积分10
17秒前
量子星尘发布了新的文献求助10
18秒前
不辞完成签到,获得积分10
18秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038368
求助须知:如何正确求助?哪些是违规求助? 3576068
关于积分的说明 11374313
捐赠科研通 3305780
什么是DOI,文献DOI怎么找? 1819322
邀请新用户注册赠送积分活动 892672
科研通“疑难数据库(出版商)”最低求助积分说明 815029