Identification of patients with internet gaming disorder via a radiomics-based machine learning model of subcortical structures in high-resolution T1-weighted MRI

无线电技术 鉴定(生物学) 人工智能 互联网 高分辨率 计算机科学 分辨率(逻辑) 机器学习 心理学 万维网 生物 地理 遥感 植物
作者
Li Wang,Shantanu Singh,Shengdan Liu,Yurong Zheng,Qianhan Liu,Minglin Yu,Xiaofei Lu,Wei Lei,Guangxiang Chen
出处
期刊:Progress in Neuro-psychopharmacology & Biological Psychiatry [Elsevier]
卷期号:133: 111026-111026
标识
DOI:10.1016/j.pnpbp.2024.111026
摘要

It is of vital importance to establish an objective and reliable model to facilitate the early diagnosis and intervention of internet gaming disorder (IGD). A total of 133 patients with IGD and 110 healthy controls (HCs) were included. We extracted radiomic features of subcortical structures in high-resolution T1-weighted MRI. Different combinations of four feature selection methods (analysis of variance, Kruskal–Wallis, recursive feature elimination and relief) and ten classification algorithms were used to identify the most robust combined models for distinguishing IGD patients from HCs. Furthermore, a nomogram incorporating radiomic signatures and independent clinical factors was developed. Calibration curve and decision curve analyses were used to evaluate the nomogram. The combination of analysis of variance selector and logistic regression classifier identified that the radiomic model constructed with 20 features from the right caudate nucleus and amygdala showed better IGD screening performance. The radiomic model produced good areas under the curves (AUCs) in the training, validation and test cohorts (AUCs of 0.961, 0.903 and 0.895, respectively). In addition, sex, internet addiction test scores and radiomic scores were included in the nomogram as independent risk factors for IGD. Analysis of the correction curve and decision curve showed that the clinical-radiomic model has good reliability (C-index: 0.987). The nomogram incorporating radiomic features of subcortical structures and clinical characteristics achieved satisfactory classification performance and could serve as an effective tool for distinguishing IGD patients from HCs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lucas应助迪琛采纳,获得10
1秒前
1秒前
个性的汲发布了新的文献求助10
1秒前
2秒前
kilig完成签到,获得积分10
4秒前
Nitric_Oxide完成签到,获得积分10
5秒前
5秒前
bluekids完成签到,获得积分10
5秒前
万能图书馆应助欧阳采纳,获得10
8秒前
学习通发布了新的文献求助10
9秒前
悦耳人生完成签到,获得积分10
9秒前
Essie完成签到,获得积分10
12秒前
程程程完成签到 ,获得积分10
12秒前
朴实的面包完成签到,获得积分10
12秒前
消失的岛屿完成签到,获得积分10
15秒前
MC完成签到,获得积分10
15秒前
柏听寒完成签到 ,获得积分10
16秒前
迷人的觅风关注了科研通微信公众号
17秒前
17秒前
明亮的宁完成签到,获得积分10
17秒前
难过飞瑶完成签到,获得积分10
18秒前
xjcy应助HHH采纳,获得20
19秒前
小眼是我的男神完成签到,获得积分10
19秒前
个性的汲完成签到,获得积分10
21秒前
TJ完成签到,获得积分10
22秒前
杨雪妮关注了科研通微信公众号
23秒前
24秒前
嘘唏关注了科研通微信公众号
25秒前
26秒前
27秒前
Akim应助摇槐米采纳,获得10
27秒前
28秒前
28秒前
欧阳发布了新的文献求助10
31秒前
zyfqpc应助李剑鸿采纳,获得50
32秒前
赫如冰发布了新的文献求助10
34秒前
34秒前
天天快乐应助紧张的如南采纳,获得10
34秒前
孪生素数发布了新的文献求助30
35秒前
SciGPT应助顺利毕业采纳,获得10
35秒前
高分求助中
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137977
求助须知:如何正确求助?哪些是违规求助? 2788907
关于积分的说明 7789001
捐赠科研通 2445272
什么是DOI,文献DOI怎么找? 1300255
科研通“疑难数据库(出版商)”最低求助积分说明 625878
版权声明 601046