Identification of patients with internet gaming disorder via a radiomics-based machine learning model of subcortical structures in high-resolution T1-weighted MRI

无线电技术 鉴定(生物学) 人工智能 互联网 高分辨率 计算机科学 分辨率(逻辑) 机器学习 心理学 万维网 生物 地理 遥感 植物
作者
Li Wang,Li Zhou,Shengdan Liu,Yurong Zheng,Qianhan Liu,Minglin Yu,Xiaofei Lu,Wei Lei,Guangxiang Chen
出处
期刊:Progress in Neuro-psychopharmacology & Biological Psychiatry [Elsevier]
卷期号:133: 111026-111026 被引量:3
标识
DOI:10.1016/j.pnpbp.2024.111026
摘要

It is of vital importance to establish an objective and reliable model to facilitate the early diagnosis and intervention of internet gaming disorder (IGD). A total of 133 patients with IGD and 110 healthy controls (HCs) were included. We extracted radiomic features of subcortical structures in high-resolution T1-weighted MRI. Different combinations of four feature selection methods (analysis of variance, Kruskal–Wallis, recursive feature elimination and relief) and ten classification algorithms were used to identify the most robust combined models for distinguishing IGD patients from HCs. Furthermore, a nomogram incorporating radiomic signatures and independent clinical factors was developed. Calibration curve and decision curve analyses were used to evaluate the nomogram. The combination of analysis of variance selector and logistic regression classifier identified that the radiomic model constructed with 20 features from the right caudate nucleus and amygdala showed better IGD screening performance. The radiomic model produced good areas under the curves (AUCs) in the training, validation and test cohorts (AUCs of 0.961, 0.903 and 0.895, respectively). In addition, sex, internet addiction test scores and radiomic scores were included in the nomogram as independent risk factors for IGD. Analysis of the correction curve and decision curve showed that the clinical-radiomic model has good reliability (C-index: 0.987). The nomogram incorporating radiomic features of subcortical structures and clinical characteristics achieved satisfactory classification performance and could serve as an effective tool for distinguishing IGD patients from HCs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Cassie完成签到,获得积分10
1秒前
1秒前
1282941496完成签到,获得积分10
1秒前
Orange应助昭和的joker采纳,获得10
1秒前
1秒前
雨雨发布了新的文献求助30
2秒前
雪山飞龙发布了新的文献求助10
3秒前
秀丽的玉米完成签到,获得积分10
3秒前
刘晓海发布了新的文献求助10
4秒前
美罗培南完成签到 ,获得积分0
4秒前
5秒前
不倦发布了新的文献求助10
5秒前
5秒前
车宇发布了新的文献求助10
5秒前
huihui完成签到 ,获得积分10
5秒前
萧寒发布了新的文献求助10
5秒前
zzm23发布了新的文献求助10
7秒前
aldehyde应助鳗鱼梦寒采纳,获得10
7秒前
youth完成签到,获得积分10
8秒前
呼呼发布了新的文献求助10
8秒前
完美世界应助andrew12399采纳,获得10
8秒前
9秒前
9秒前
9秒前
糟糕的铁锤给dusjsj的求助进行了留言
9秒前
10秒前
10秒前
orixero应助熠云采纳,获得10
11秒前
甜美的芷完成签到,获得积分10
11秒前
NZhe发布了新的文献求助10
12秒前
苹果夜梦完成签到 ,获得积分10
13秒前
13秒前
可爱春天发布了新的文献求助10
13秒前
南姜完成签到,获得积分10
13秒前
cancan发布了新的文献求助10
14秒前
2167418960完成签到,获得积分10
14秒前
Ava应助李博士采纳,获得10
15秒前
15秒前
怡然凝云发布了新的文献求助30
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Treatise on Geochemistry 1500
Binary Alloy Phase Diagrams, 2nd Edition 1400
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5514922
求助须知:如何正确求助?哪些是违规求助? 4608502
关于积分的说明 14511663
捐赠科研通 4544566
什么是DOI,文献DOI怎么找? 2490164
邀请新用户注册赠送积分活动 1472048
关于科研通互助平台的介绍 1443840