PSO-optimized SSLMS adaptive filter for signal denoising of rolling bearings under small sample condition

降噪 信号(编程语言) 滤波器(信号处理) 样品(材料) 模式识别(心理学) 人工智能 计算机科学 数学 计算机视觉 色谱法 化学 程序设计语言
作者
Linfeng Deng,Xiaoqiang Wang
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:35 (9): 096115-096115 被引量:1
标识
DOI:10.1088/1361-6501/ad4dc5
摘要

Abstract To address the issue that the deep learning-based denoising algorithms can hardly effectively eliminate the background noise under small sample data condition, this paper proposes a new denoising method based on spectral subtraction (SS) and least mean square (LMS) adaptive filtering algorithms. To achieve the adaptive selection for the parameters of SS and LMS algorithms, particle swarm optimization approach is employed to search and optimize the parameters in the two algorithms, which is helpful for the two algorithms to play an important role in eliminating the noise components with the different properties. Subsequently, the SS algorithm and the LMS algorithm are appropriately combined, and the SS-processed signal is input into the LMS algorithm as a desired signal to actualize the LMS adaptive filtering function. In this way, the denoising performance of both algorithms can be maximally utilized, which achieves effective noise reduction in vibration signal. The effectiveness and superiority of the proposed method are validated through simulation data and rolling bearing experiment data, respectively. The results demonstrate that the proposed method significantly diminishes noise components and retains precise and reliable fault features under small sample data condition, which provides an effective denoising method for rolling bearing vibration signals under small sample data condition in practical engineering scenarios.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
研友_VZG7GZ应助DONG采纳,获得10
1秒前
1秒前
何小芳完成签到,获得积分10
1秒前
量子星尘发布了新的文献求助10
1秒前
维克多发布了新的文献求助10
2秒前
刘子琪完成签到,获得积分10
2秒前
2秒前
2秒前
斯文败类应助路内里采纳,获得10
3秒前
忧心的海亦完成签到,获得积分10
3秒前
无极微光应助倩Q采纳,获得20
3秒前
风不定完成签到,获得积分10
4秒前
5秒前
5秒前
繁星长明关注了科研通微信公众号
5秒前
yitonghan发布了新的文献求助10
6秒前
佳齐完成签到,获得积分10
6秒前
7秒前
ybk666完成签到,获得积分10
8秒前
8秒前
李健的粉丝团团长应助12采纳,获得10
9秒前
9秒前
王添赟发布了新的文献求助10
10秒前
10秒前
12秒前
量子星尘发布了新的文献求助10
13秒前
13秒前
13秒前
13秒前
深情安青应助WN采纳,获得10
14秒前
14秒前
15秒前
16秒前
16秒前
烟花应助忧郁丹彤采纳,获得10
17秒前
感动水杯发布了新的文献求助10
17秒前
CodeCraft应助王添赟采纳,获得10
18秒前
执着傲柏发布了新的文献求助10
18秒前
罗艺淇发布了新的文献求助10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5553546
求助须知:如何正确求助?哪些是违规求助? 4638065
关于积分的说明 14652063
捐赠科研通 4579957
什么是DOI,文献DOI怎么找? 2512001
邀请新用户注册赠送积分活动 1486901
关于科研通互助平台的介绍 1457772