亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

PSO-optimized SSLMS adaptive filter for signal denoising of rolling bearings under small sample condition

降噪 信号(编程语言) 滤波器(信号处理) 样品(材料) 模式识别(心理学) 人工智能 计算机科学 数学 计算机视觉 色谱法 化学 程序设计语言
作者
Linfeng Deng,Xiaoqiang Wang
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:35 (9): 096115-096115 被引量:1
标识
DOI:10.1088/1361-6501/ad4dc5
摘要

Abstract To address the issue that the deep learning-based denoising algorithms can hardly effectively eliminate the background noise under small sample data condition, this paper proposes a new denoising method based on spectral subtraction (SS) and least mean square (LMS) adaptive filtering algorithms. To achieve the adaptive selection for the parameters of SS and LMS algorithms, particle swarm optimization approach is employed to search and optimize the parameters in the two algorithms, which is helpful for the two algorithms to play an important role in eliminating the noise components with the different properties. Subsequently, the SS algorithm and the LMS algorithm are appropriately combined, and the SS-processed signal is input into the LMS algorithm as a desired signal to actualize the LMS adaptive filtering function. In this way, the denoising performance of both algorithms can be maximally utilized, which achieves effective noise reduction in vibration signal. The effectiveness and superiority of the proposed method are validated through simulation data and rolling bearing experiment data, respectively. The results demonstrate that the proposed method significantly diminishes noise components and retains precise and reliable fault features under small sample data condition, which provides an effective denoising method for rolling bearing vibration signals under small sample data condition in practical engineering scenarios.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Wei发布了新的文献求助10
11秒前
55秒前
七七发布了新的文献求助10
1分钟前
科研通AI2S应助冷静新烟采纳,获得10
1分钟前
慕青应助韓導采纳,获得10
2分钟前
2分钟前
2分钟前
2分钟前
ariaooo发布了新的文献求助50
2分钟前
韓導发布了新的文献求助10
2分钟前
ariaooo完成签到,获得积分10
2分钟前
科研通AI2S应助冷静新烟采纳,获得10
3分钟前
韓導完成签到,获得积分10
3分钟前
3分钟前
358489228完成签到,获得积分10
3分钟前
3分钟前
量子星尘发布了新的文献求助10
3分钟前
米奇妙妙屋完成签到,获得积分10
3分钟前
充电宝应助sumini采纳,获得30
3分钟前
3分钟前
灯光师完成签到,获得积分10
4分钟前
rose完成签到,获得积分10
4分钟前
天天快乐应助Emiya采纳,获得10
4分钟前
4分钟前
dovejingling完成签到,获得积分10
4分钟前
djh发布了新的文献求助10
4分钟前
4分钟前
iris发布了新的文献求助10
4分钟前
上官若男应助帅气的安柏采纳,获得10
4分钟前
4分钟前
我是老大应助iris采纳,获得10
4分钟前
FashionBoy应助djh采纳,获得10
4分钟前
白云发布了新的文献求助10
4分钟前
yukky完成签到,获得积分10
4分钟前
GPTea完成签到,获得积分0
4分钟前
4分钟前
大个应助yukky采纳,获得30
4分钟前
sumini发布了新的文献求助30
4分钟前
4分钟前
碧蓝恶天完成签到,获得积分10
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Encyclopedia of Materials: Plastics and Polymers 1000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
Handbook of Social and Emotional Learning, Second Edition 900
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4926521
求助须知:如何正确求助?哪些是违规求助? 4196268
关于积分的说明 13032297
捐赠科研通 3968426
什么是DOI,文献DOI怎么找? 2174970
邀请新用户注册赠送积分活动 1192161
关于科研通互助平台的介绍 1102388