PSO-optimized SSLMS adaptive filter for signal denoising of rolling bearings under small sample condition

降噪 信号(编程语言) 滤波器(信号处理) 样品(材料) 模式识别(心理学) 人工智能 计算机科学 数学 计算机视觉 色谱法 化学 程序设计语言
作者
Linfeng Deng,Xiaoqiang Wang
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:35 (9): 096115-096115
标识
DOI:10.1088/1361-6501/ad4dc5
摘要

Abstract To address the issue that the deep learning-based denoising algorithms can hardly effectively eliminate the background noise under small sample data condition, this paper proposes a new denoising method based on spectral subtraction (SS) and least mean square (LMS) adaptive filtering algorithms. To achieve the adaptive selection for the parameters of SS and LMS algorithms, particle swarm optimization approach is employed to search and optimize the parameters in the two algorithms, which is helpful for the two algorithms to play an important role in eliminating the noise components with the different properties. Subsequently, the SS algorithm and the LMS algorithm are appropriately combined, and the SS-processed signal is input into the LMS algorithm as a desired signal to actualize the LMS adaptive filtering function. In this way, the denoising performance of both algorithms can be maximally utilized, which achieves effective noise reduction in vibration signal. The effectiveness and superiority of the proposed method are validated through simulation data and rolling bearing experiment data, respectively. The results demonstrate that the proposed method significantly diminishes noise components and retains precise and reliable fault features under small sample data condition, which provides an effective denoising method for rolling bearing vibration signals under small sample data condition in practical engineering scenarios.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
杰杰屋完成签到,获得积分10
1秒前
牛牛完成签到 ,获得积分10
1秒前
YYDS54发布了新的文献求助10
2秒前
淡定鸿涛发布了新的文献求助10
3秒前
至秦发布了新的文献求助10
4秒前
yy发布了新的文献求助10
4秒前
顾矜应助细腻代真采纳,获得10
5秒前
6秒前
6秒前
Hoshiyo完成签到,获得积分10
7秒前
8秒前
蜜CC完成签到,获得积分20
8秒前
8秒前
9秒前
Patty发布了新的文献求助10
9秒前
舒适映寒完成签到,获得积分10
10秒前
至秦完成签到,获得积分20
11秒前
李健的小迷弟应助健明采纳,获得10
11秒前
lullu发布了新的文献求助10
12秒前
蜜CC发布了新的文献求助10
12秒前
12秒前
搜集达人应助QinQin采纳,获得10
12秒前
听风发布了新的文献求助10
13秒前
完美世界应助小刺猬采纳,获得10
13秒前
13秒前
14秒前
15秒前
jzj完成签到 ,获得积分10
17秒前
17秒前
乐乐应助听风采纳,获得10
18秒前
一一应助xx采纳,获得30
18秒前
18秒前
pengjiejie发布了新的文献求助10
18秒前
19秒前
20秒前
万能图书馆应助畅快的南风采纳,获得150
21秒前
21秒前
一一应助lvsehx采纳,获得10
21秒前
li发布了新的文献求助10
23秒前
23秒前
高分求助中
Solution Manual for Strategic Compensation A Human Resource Management Approach 1200
Natural History of Mantodea 螳螂的自然史 1000
Glucuronolactone Market Outlook Report: Industry Size, Competition, Trends and Growth Opportunities by Region, YoY Forecasts from 2024 to 2031 800
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
The analysis and solution of partial differential equations 400
Spatial Political Economy: Uneven Development and the Production of Nature in Chile 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3334409
求助须知:如何正确求助?哪些是违规求助? 2963607
关于积分的说明 8610762
捐赠科研通 2642584
什么是DOI,文献DOI怎么找? 1446799
科研通“疑难数据库(出版商)”最低求助积分说明 670421
邀请新用户注册赠送积分活动 658608