SingletSeeker: an unsupervised clustering approach for automated singlet discrimination in cytometry

聚类分析 计算机科学 特征(语言学) 灵敏度(控制系统) 模式识别(心理学) 数据挖掘 过程(计算) 集合(抽象数据类型) 细胞仪 特征选择 人工智能 数据集 层次聚类 算法 化学 细胞 哲学 语言学 生物化学 电子工程 工程类 程序设计语言 操作系统
作者
Mark Colasurdo,Laura Ferrer‐Font,Aaron Middlebrook,A Konecny,Martin Prlic,Josef Špidlen
出处
期刊:Cytometry Part B-clinical Cytometry [Wiley]
标识
DOI:10.1002/cyto.b.22216
摘要

Abstract Flow cytometry is a high‐throughput, high‐dimensional technique that generates large sets of single‐cell data. Prior to analyzing this data, it is common to exclude any events that contain two or more cells, multiplets, to ensure downstream analysis and quantification is of single‐cell events, singlets, only. The process of singlet discrimination is critical yet fundamentally subjective and time‐consuming; it is performed manually by the user, where the proper exclusion of multiplets depends on the user's expertise and often varies from experiment to experiment. To address this problem, we have developed an algorithm to automatically discriminate singlets from other unwanted events such as multiplets and debris. Using parameters derived from imaging, the algorithm first identifies high‐density clusters of events using a density‐based clustering algorithm, and then classifies the clusters based on their properties. Multiplets are discarded in the first step, while singlets are distinguished from debris in the second step. The algorithm can use different strategies on imaging feature selection‐based user's preferences and imaging features available. In addition, the relative importance of singlets precision vs. sensitivity can be further tweaked via a density coefficient adjustment. Twenty‐two datasets from various sites and of various cell types acquired on the BD FACSDiscover™ S8 Cell Sorter with CellView™ Image Technology were used to develop and validate the algorithm across multiple imaging feature sets. A consistent singlets precision >97% with a solid >88% sensitivity has been demonstrated with a LightLoss feature set and the default density coefficient. This work yields a high‐precision, high‐sensitivity algorithm capable of objective and automated singlet discrimination across multiple cell types using various imaging‐derived parameters. A free FlowJo™ Software plugin implementation is available for simple and reproducible singlet discrimination for use at the beginning of any user's workflow.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
李伟发布了新的文献求助10
刚刚
Denmark完成签到 ,获得积分10
刚刚
Gino完成签到,获得积分0
1秒前
体贴向珊完成签到,获得积分10
2秒前
神勇的铁身完成签到,获得积分20
2秒前
小马甲应助QZZ采纳,获得10
2秒前
林夕完成签到,获得积分10
2秒前
大个应助一台小钢炮采纳,获得10
2秒前
CodeCraft应助奔跑的棉花采纳,获得10
3秒前
wxbroute发布了新的文献求助10
4秒前
4秒前
4秒前
chen完成签到,获得积分20
5秒前
5秒前
HWei完成签到,获得积分10
5秒前
anesthesia发布了新的文献求助10
6秒前
多情的夜安给多情的夜安的求助进行了留言
6秒前
稚初关注了科研通微信公众号
6秒前
7秒前
李健应助神勇的铁身采纳,获得10
7秒前
7秒前
7秒前
7秒前
alzcor完成签到,获得积分10
8秒前
yufanhui应助BMH采纳,获得10
8秒前
嗯很好发布了新的文献求助10
8秒前
goodsheep完成签到 ,获得积分10
8秒前
无奈若雁完成签到,获得积分10
8秒前
applelpypies完成签到 ,获得积分0
9秒前
嘻嘻哈哈啊完成签到 ,获得积分10
10秒前
细腻涵菱完成签到,获得积分10
11秒前
西伯利亚兔完成签到,获得积分10
11秒前
Anonymousnake完成签到,获得积分10
11秒前
alzcor发布了新的文献求助15
12秒前
酷炫的之柔完成签到,获得积分10
12秒前
叶楠发布了新的文献求助10
14秒前
15秒前
lbt完成签到 ,获得积分10
15秒前
21完成签到 ,获得积分10
16秒前
高分求助中
Evolution 3rd edition 1500
保险藏宝图 1000
Lire en communiste 1000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
Mathematics and Finite Element Discretizations of Incompressible Navier—Stokes Flows 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3183888
求助须知:如何正确求助?哪些是违规求助? 2834166
关于积分的说明 7998239
捐赠科研通 2496447
什么是DOI,文献DOI怎么找? 1332230
科研通“疑难数据库(出版商)”最低求助积分说明 636537
邀请新用户注册赠送积分活动 603764