SingletSeeker: an unsupervised clustering approach for automated singlet discrimination in cytometry

聚类分析 计算机科学 特征(语言学) 灵敏度(控制系统) 模式识别(心理学) 数据挖掘 过程(计算) 集合(抽象数据类型) 细胞仪 特征选择 人工智能 数据集 层次聚类 算法 化学 细胞 哲学 语言学 生物化学 电子工程 工程类 程序设计语言 操作系统
作者
Mark Colasurdo,Laura Ferrer‐Font,Aaron Middlebrook,A Konecny,Martin Prlic,Josef Špidlen
出处
期刊:Cytometry Part B-clinical Cytometry [Wiley]
标识
DOI:10.1002/cyto.b.22216
摘要

Abstract Flow cytometry is a high‐throughput, high‐dimensional technique that generates large sets of single‐cell data. Prior to analyzing this data, it is common to exclude any events that contain two or more cells, multiplets, to ensure downstream analysis and quantification is of single‐cell events, singlets, only. The process of singlet discrimination is critical yet fundamentally subjective and time‐consuming; it is performed manually by the user, where the proper exclusion of multiplets depends on the user's expertise and often varies from experiment to experiment. To address this problem, we have developed an algorithm to automatically discriminate singlets from other unwanted events such as multiplets and debris. Using parameters derived from imaging, the algorithm first identifies high‐density clusters of events using a density‐based clustering algorithm, and then classifies the clusters based on their properties. Multiplets are discarded in the first step, while singlets are distinguished from debris in the second step. The algorithm can use different strategies on imaging feature selection‐based user's preferences and imaging features available. In addition, the relative importance of singlets precision vs. sensitivity can be further tweaked via a density coefficient adjustment. Twenty‐two datasets from various sites and of various cell types acquired on the BD FACSDiscover™ S8 Cell Sorter with CellView™ Image Technology were used to develop and validate the algorithm across multiple imaging feature sets. A consistent singlets precision >97% with a solid >88% sensitivity has been demonstrated with a LightLoss feature set and the default density coefficient. This work yields a high‐precision, high‐sensitivity algorithm capable of objective and automated singlet discrimination across multiple cell types using various imaging‐derived parameters. A free FlowJo™ Software plugin implementation is available for simple and reproducible singlet discrimination for use at the beginning of any user's workflow.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小栋完成签到,获得积分20
1秒前
1秒前
脑洞疼应助GuSiwen采纳,获得10
1秒前
2秒前
雪白紫夏完成签到,获得积分10
2秒前
随机子应助顺遂采纳,获得10
2秒前
yillin完成签到,获得积分10
3秒前
冷静的嫣然完成签到 ,获得积分10
3秒前
4秒前
斯文败类应助刘春亚采纳,获得10
4秒前
小二郎应助凉拌冰阔落采纳,获得10
5秒前
7秒前
烟花应助yillin采纳,获得10
7秒前
8秒前
9秒前
10秒前
忐忑的蛋糕完成签到,获得积分10
12秒前
飘逸的青雪完成签到,获得积分10
12秒前
ya完成签到,获得积分10
12秒前
思源应助木光采纳,获得10
13秒前
YY发布了新的文献求助10
13秒前
13秒前
14秒前
14秒前
攀登发布了新的文献求助10
14秒前
shangy完成签到,获得积分10
14秒前
随机发布了新的文献求助10
15秒前
16秒前
16秒前
清清子发布了新的文献求助10
17秒前
大模型应助Wrong采纳,获得10
17秒前
DE2022发布了新的文献求助10
17秒前
x6093关注了科研通微信公众号
18秒前
SciGPT应助鹿芩采纳,获得10
18秒前
赘婿应助shan采纳,获得10
18秒前
20秒前
Jasper应助迷人的小王采纳,获得10
21秒前
贰拾柒关注了科研通微信公众号
22秒前
wyh123完成签到 ,获得积分10
22秒前
23秒前
高分求助中
Evolution 3rd edition 1500
保险藏宝图 1000
Lire en communiste 1000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
Mathematics and Finite Element Discretizations of Incompressible Navier—Stokes Flows 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3182596
求助须知:如何正确求助?哪些是违规求助? 2832947
关于积分的说明 7991223
捐赠科研通 2495031
什么是DOI,文献DOI怎么找? 1331187
科研通“疑难数据库(出版商)”最低求助积分说明 636238
邀请新用户注册赠送积分活动 603216