亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

SingletSeeker: an unsupervised clustering approach for automated singlet discrimination in cytometry

聚类分析 计算机科学 特征(语言学) 灵敏度(控制系统) 模式识别(心理学) 数据挖掘 过程(计算) 集合(抽象数据类型) 细胞仪 特征选择 人工智能 数据集 层次聚类 算法 化学 细胞 哲学 语言学 生物化学 电子工程 工程类 程序设计语言 操作系统
作者
Mark Colasurdo,Laura Ferrer‐Font,Aaron Middlebrook,A Konecny,Martin Prlic,Josef Špidlen
出处
期刊:Cytometry Part B-clinical Cytometry [Wiley]
标识
DOI:10.1002/cyto.b.22216
摘要

Abstract Flow cytometry is a high‐throughput, high‐dimensional technique that generates large sets of single‐cell data. Prior to analyzing this data, it is common to exclude any events that contain two or more cells, multiplets, to ensure downstream analysis and quantification is of single‐cell events, singlets, only. The process of singlet discrimination is critical yet fundamentally subjective and time‐consuming; it is performed manually by the user, where the proper exclusion of multiplets depends on the user's expertise and often varies from experiment to experiment. To address this problem, we have developed an algorithm to automatically discriminate singlets from other unwanted events such as multiplets and debris. Using parameters derived from imaging, the algorithm first identifies high‐density clusters of events using a density‐based clustering algorithm, and then classifies the clusters based on their properties. Multiplets are discarded in the first step, while singlets are distinguished from debris in the second step. The algorithm can use different strategies on imaging feature selection‐based user's preferences and imaging features available. In addition, the relative importance of singlets precision vs. sensitivity can be further tweaked via a density coefficient adjustment. Twenty‐two datasets from various sites and of various cell types acquired on the BD FACSDiscover™ S8 Cell Sorter with CellView™ Image Technology were used to develop and validate the algorithm across multiple imaging feature sets. A consistent singlets precision >97% with a solid >88% sensitivity has been demonstrated with a LightLoss feature set and the default density coefficient. This work yields a high‐precision, high‐sensitivity algorithm capable of objective and automated singlet discrimination across multiple cell types using various imaging‐derived parameters. A free FlowJo™ Software plugin implementation is available for simple and reproducible singlet discrimination for use at the beginning of any user's workflow.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yangjinru完成签到 ,获得积分10
15秒前
19秒前
zqq完成签到,获得积分0
28秒前
Ray羽曦~发布了新的文献求助10
38秒前
莫星晨完成签到,获得积分10
49秒前
66完成签到,获得积分10
55秒前
Hello应助奋斗的杰采纳,获得30
56秒前
1分钟前
现代青枫应助科研通管家采纳,获得10
1分钟前
1分钟前
zengtx1发布了新的文献求助10
1分钟前
siuu完成签到,获得积分20
1分钟前
zengtx1完成签到,获得积分10
1分钟前
LLL完成签到,获得积分10
1分钟前
xiaofei666应助siuu采纳,获得50
2分钟前
小二郎应助阿塔潘采纳,获得10
2分钟前
肉丸完成签到 ,获得积分10
2分钟前
李志全完成签到 ,获得积分10
3分钟前
3分钟前
andrele应助科研通管家采纳,获得10
3分钟前
3分钟前
黎少俊发布了新的文献求助10
3分钟前
黎少俊完成签到,获得积分10
3分钟前
支若蕊发布了新的文献求助50
3分钟前
哈比人linling完成签到,获得积分10
4分钟前
4分钟前
5分钟前
小巧蛋挞发布了新的文献求助10
5分钟前
小巧蛋挞完成签到,获得积分10
5分钟前
yuan完成签到,获得积分10
5分钟前
5分钟前
5分钟前
粽子完成签到 ,获得积分10
5分钟前
ylj完成签到,获得积分20
5分钟前
ylj发布了新的文献求助10
5分钟前
5866发布了新的文献求助10
6分钟前
安妮完成签到 ,获得积分10
6分钟前
小马甲应助5866采纳,获得10
6分钟前
大模型应助小许采纳,获得10
6分钟前
思源应助谁来救救我采纳,获得10
6分钟前
高分求助中
Spray / Wall-interaction Modelling by Dimensionless Data Analysis 2000
Evolution 3rd edition 1500
保险藏宝图 1000
Lire en communiste 1000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
Mathematics and Finite Element Discretizations of Incompressible Navier—Stokes Flows 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3186697
求助须知:如何正确求助?哪些是违规求助? 2836903
关于积分的说明 8011861
捐赠科研通 2499260
什么是DOI,文献DOI怎么找? 1334253
科研通“疑难数据库(出版商)”最低求助积分说明 637115
邀请新用户注册赠送积分活动 605032