SingletSeeker: an unsupervised clustering approach for automated singlet discrimination in cytometry

聚类分析 计算机科学 特征(语言学) 灵敏度(控制系统) 模式识别(心理学) 数据挖掘 过程(计算) 集合(抽象数据类型) 细胞仪 特征选择 人工智能 数据集 层次聚类 算法 化学 细胞 哲学 语言学 生物化学 电子工程 工程类 程序设计语言 操作系统
作者
Mark Colasurdo,Laura Ferrer‐Font,Aaron Middlebrook,A Konecny,Martin Prlic,Josef Špidlen
出处
期刊:Cytometry Part B-clinical Cytometry [Wiley]
标识
DOI:10.1002/cyto.b.22216
摘要

Abstract Flow cytometry is a high‐throughput, high‐dimensional technique that generates large sets of single‐cell data. Prior to analyzing this data, it is common to exclude any events that contain two or more cells, multiplets, to ensure downstream analysis and quantification is of single‐cell events, singlets, only. The process of singlet discrimination is critical yet fundamentally subjective and time‐consuming; it is performed manually by the user, where the proper exclusion of multiplets depends on the user's expertise and often varies from experiment to experiment. To address this problem, we have developed an algorithm to automatically discriminate singlets from other unwanted events such as multiplets and debris. Using parameters derived from imaging, the algorithm first identifies high‐density clusters of events using a density‐based clustering algorithm, and then classifies the clusters based on their properties. Multiplets are discarded in the first step, while singlets are distinguished from debris in the second step. The algorithm can use different strategies on imaging feature selection‐based user's preferences and imaging features available. In addition, the relative importance of singlets precision vs. sensitivity can be further tweaked via a density coefficient adjustment. Twenty‐two datasets from various sites and of various cell types acquired on the BD FACSDiscover™ S8 Cell Sorter with CellView™ Image Technology were used to develop and validate the algorithm across multiple imaging feature sets. A consistent singlets precision >97% with a solid >88% sensitivity has been demonstrated with a LightLoss feature set and the default density coefficient. This work yields a high‐precision, high‐sensitivity algorithm capable of objective and automated singlet discrimination across multiple cell types using various imaging‐derived parameters. A free FlowJo™ Software plugin implementation is available for simple and reproducible singlet discrimination for use at the beginning of any user's workflow.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Betty完成签到,获得积分10
刚刚
1秒前
yufanhui应助Betty采纳,获得10
4秒前
rational完成签到,获得积分10
5秒前
yyyy发布了新的文献求助10
6秒前
硬撑着罢了完成签到,获得积分10
6秒前
在水一方应助bacibobo采纳,获得10
10秒前
12秒前
康康完成签到 ,获得积分10
12秒前
文献求助111完成签到,获得积分10
14秒前
通达完成签到,获得积分10
14秒前
吃的了细糠的山猪完成签到,获得积分10
16秒前
16秒前
17秒前
不配.应助斯文可仁采纳,获得10
17秒前
17秒前
lhm发布了新的文献求助10
18秒前
yyyy完成签到,获得积分10
21秒前
22发布了新的文献求助10
21秒前
魁梧的火龙果完成签到,获得积分10
22秒前
小宋发布了新的文献求助10
23秒前
23秒前
Hannah17发布了新的文献求助10
27秒前
Vanni完成签到,获得积分10
28秒前
Mr.Ren完成签到,获得积分10
28秒前
lrl发布了新的文献求助10
28秒前
香蕉觅云应助22采纳,获得10
29秒前
希望天下0贩的0应助ACD采纳,获得10
31秒前
研友_VZG7GZ应助允子哥采纳,获得10
32秒前
英姑应助小宋采纳,获得10
33秒前
我是老大应助清风采纳,获得10
34秒前
35秒前
36秒前
yuan完成签到,获得积分10
37秒前
dreamvssnow发布了新的文献求助30
38秒前
李健的小迷弟应助melenda采纳,获得10
39秒前
Hannah17完成签到,获得积分20
39秒前
chu发布了新的文献求助10
40秒前
Lucas应助科研通管家采纳,获得10
41秒前
丘比特应助科研通管家采纳,获得10
41秒前
高分求助中
Spray / Wall-interaction Modelling by Dimensionless Data Analysis 2000
Evolution 3rd edition 1500
保险藏宝图 1000
Lire en communiste 1000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
Mathematics and Finite Element Discretizations of Incompressible Navier—Stokes Flows 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3184554
求助须知:如何正确求助?哪些是违规求助? 2834870
关于积分的说明 8001775
捐赠科研通 2497247
什么是DOI,文献DOI怎么找? 1332731
科研通“疑难数据库(出版商)”最低求助积分说明 636676
邀请新用户注册赠送积分活动 604053