SingletSeeker: an unsupervised clustering approach for automated singlet discrimination in cytometry

聚类分析 计算机科学 特征(语言学) 灵敏度(控制系统) 模式识别(心理学) 数据挖掘 过程(计算) 集合(抽象数据类型) 细胞仪 特征选择 人工智能 数据集 层次聚类 算法 化学 细胞 哲学 语言学 生物化学 电子工程 工程类 程序设计语言 操作系统
作者
Mark Colasurdo,Laura Ferrer‐Font,Aaron Middlebrook,A Konecny,Martin Prlic,Josef Špidlen
出处
期刊:Cytometry Part B-clinical Cytometry [Wiley]
标识
DOI:10.1002/cyto.b.22216
摘要

Abstract Flow cytometry is a high‐throughput, high‐dimensional technique that generates large sets of single‐cell data. Prior to analyzing this data, it is common to exclude any events that contain two or more cells, multiplets, to ensure downstream analysis and quantification is of single‐cell events, singlets, only. The process of singlet discrimination is critical yet fundamentally subjective and time‐consuming; it is performed manually by the user, where the proper exclusion of multiplets depends on the user's expertise and often varies from experiment to experiment. To address this problem, we have developed an algorithm to automatically discriminate singlets from other unwanted events such as multiplets and debris. Using parameters derived from imaging, the algorithm first identifies high‐density clusters of events using a density‐based clustering algorithm, and then classifies the clusters based on their properties. Multiplets are discarded in the first step, while singlets are distinguished from debris in the second step. The algorithm can use different strategies on imaging feature selection‐based user's preferences and imaging features available. In addition, the relative importance of singlets precision vs. sensitivity can be further tweaked via a density coefficient adjustment. Twenty‐two datasets from various sites and of various cell types acquired on the BD FACSDiscover™ S8 Cell Sorter with CellView™ Image Technology were used to develop and validate the algorithm across multiple imaging feature sets. A consistent singlets precision >97% with a solid >88% sensitivity has been demonstrated with a LightLoss feature set and the default density coefficient. This work yields a high‐precision, high‐sensitivity algorithm capable of objective and automated singlet discrimination across multiple cell types using various imaging‐derived parameters. A free FlowJo™ Software plugin implementation is available for simple and reproducible singlet discrimination for use at the beginning of any user's workflow.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
佳丽发布了新的文献求助10
刚刚
隐形小蜜蜂完成签到,获得积分10
刚刚
chem001完成签到,获得积分20
1秒前
郗妫完成签到,获得积分10
1秒前
2秒前
2秒前
SciGPT应助我不明白采纳,获得10
3秒前
复杂完成签到 ,获得积分10
3秒前
LXY完成签到,获得积分20
3秒前
伊雪儿完成签到,获得积分10
5秒前
111个1发布了新的文献求助30
5秒前
听星伴月完成签到,获得积分10
5秒前
Zhao完成签到,获得积分10
5秒前
憧憬发布了新的文献求助10
6秒前
6秒前
鲍文启完成签到 ,获得积分10
7秒前
在水一方应助灌饼采纳,获得10
8秒前
小瑞完成签到,获得积分10
9秒前
闪闪的鹏博完成签到,获得积分10
9秒前
111发布了新的文献求助10
9秒前
搜集达人应助LXY采纳,获得10
9秒前
拂晓梦彤完成签到,获得积分10
10秒前
10秒前
12秒前
科研通AI2S应助yuzhang312采纳,获得10
13秒前
13秒前
13秒前
金刚经应助zhaoyaoshi采纳,获得10
14秒前
强健的晟睿完成签到,获得积分10
14秒前
LN发布了新的文献求助10
14秒前
Orange应助jk采纳,获得10
15秒前
15秒前
Yziii举报xinxinxin91求助涉嫌违规
16秒前
16秒前
清秀的SONG完成签到 ,获得积分10
16秒前
17秒前
华仔应助西西采纳,获得10
17秒前
河马卡卡发布了新的文献求助10
17秒前
18秒前
Akim应助123采纳,获得10
18秒前
高分求助中
Spray / Wall-interaction Modelling by Dimensionless Data Analysis 2000
Femoral insertion of the ACL. Radiographic quadrant method 1000
ALA生合成不全マウスでの糖代謝異常の分子機構解析 520
Mathematics and Finite Element Discretizations of Incompressible Navier—Stokes Flows 500
2024 Medicinal Chemistry Reviews 400
Dictionary of socialism 350
Geochemistry, 2nd Edition 地球化学经典教科书第二版 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3194343
求助须知:如何正确求助?哪些是违规求助? 2843259
关于积分的说明 8043993
捐赠科研通 2507735
什么是DOI,文献DOI怎么找? 1340010
科研通“疑难数据库(出版商)”最低求助积分说明 638854
邀请新用户注册赠送积分活动 607742