SingletSeeker: an unsupervised clustering approach for automated singlet discrimination in cytometry

聚类分析 计算机科学 特征(语言学) 灵敏度(控制系统) 模式识别(心理学) 数据挖掘 过程(计算) 集合(抽象数据类型) 细胞仪 特征选择 人工智能 数据集 层次聚类 算法 化学 细胞 哲学 语言学 生物化学 电子工程 工程类 程序设计语言 操作系统
作者
Mark Colasurdo,Laura Ferrer‐Font,Aaron Middlebrook,A Konecny,Martin Prlic,Josef Špidlen
出处
期刊:Cytometry Part B-clinical Cytometry [Wiley]
标识
DOI:10.1002/cyto.b.22216
摘要

Abstract Flow cytometry is a high‐throughput, high‐dimensional technique that generates large sets of single‐cell data. Prior to analyzing this data, it is common to exclude any events that contain two or more cells, multiplets, to ensure downstream analysis and quantification is of single‐cell events, singlets, only. The process of singlet discrimination is critical yet fundamentally subjective and time‐consuming; it is performed manually by the user, where the proper exclusion of multiplets depends on the user's expertise and often varies from experiment to experiment. To address this problem, we have developed an algorithm to automatically discriminate singlets from other unwanted events such as multiplets and debris. Using parameters derived from imaging, the algorithm first identifies high‐density clusters of events using a density‐based clustering algorithm, and then classifies the clusters based on their properties. Multiplets are discarded in the first step, while singlets are distinguished from debris in the second step. The algorithm can use different strategies on imaging feature selection‐based user's preferences and imaging features available. In addition, the relative importance of singlets precision vs. sensitivity can be further tweaked via a density coefficient adjustment. Twenty‐two datasets from various sites and of various cell types acquired on the BD FACSDiscover™ S8 Cell Sorter with CellView™ Image Technology were used to develop and validate the algorithm across multiple imaging feature sets. A consistent singlets precision >97% with a solid >88% sensitivity has been demonstrated with a LightLoss feature set and the default density coefficient. This work yields a high‐precision, high‐sensitivity algorithm capable of objective and automated singlet discrimination across multiple cell types using various imaging‐derived parameters. A free FlowJo™ Software plugin implementation is available for simple and reproducible singlet discrimination for use at the beginning of any user's workflow.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Saluzi发布了新的文献求助10
1秒前
HEIKU应助睡不醒的喵采纳,获得10
1秒前
loski完成签到,获得积分10
2秒前
April发布了新的文献求助10
3秒前
lay完成签到 ,获得积分10
5秒前
唐隶完成签到,获得积分10
5秒前
俊逸书琴发布了新的文献求助10
6秒前
7秒前
Orange应助不安的chen采纳,获得10
7秒前
7秒前
10秒前
共享精神应助千与千夜采纳,获得10
11秒前
科研通AI2S应助生动的怜菡采纳,获得10
11秒前
科研通AI2S应助生动的怜菡采纳,获得10
11秒前
12秒前
iNk应助路奇k采纳,获得20
12秒前
12秒前
Pomelo发布了新的文献求助10
12秒前
bboo完成签到,获得积分10
12秒前
12完成签到,获得积分10
12秒前
12秒前
医魔完成签到,获得积分20
13秒前
April完成签到,获得积分10
13秒前
14秒前
15秒前
闪闪镜子发布了新的文献求助10
15秒前
夏爷完成签到,获得积分10
16秒前
大个应助化学位移值采纳,获得10
16秒前
调皮飞绿发布了新的文献求助10
16秒前
曾泳钧完成签到,获得积分10
17秒前
劲秉应助直率的从彤采纳,获得10
17秒前
尺八发布了新的文献求助10
17秒前
不安的chen发布了新的文献求助10
19秒前
19秒前
xinyi发布了新的文献求助10
19秒前
NIKE112发布了新的文献求助10
21秒前
白帝关注了科研通微信公众号
21秒前
le完成签到,获得积分10
21秒前
虎虎完成签到,获得积分10
24秒前
领导范儿应助小莹子采纳,获得10
25秒前
高分求助中
Spray / Wall-interaction Modelling by Dimensionless Data Analysis 2000
ALA生合成不全マウスでの糖代謝異常の分子機構解析 520
安全防范技术与工程 500
Mathematics and Finite Element Discretizations of Incompressible Navier—Stokes Flows 500
2-Acetyl-1-pyrroline: an important aroma component of cooked rice 500
A real-time energy management strategy based on fuzzy control and ECMS for PHEVs 400
2024 Medicinal Chemistry Reviews 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3191125
求助须知:如何正确求助?哪些是违规求助? 2840488
关于积分的说明 8028591
捐赠科研通 2503810
什么是DOI,文献DOI怎么找? 1337205
科研通“疑难数据库(出版商)”最低求助积分说明 638034
邀请新用户注册赠送积分活动 606497