SingletSeeker: an unsupervised clustering approach for automated singlet discrimination in cytometry

聚类分析 计算机科学 特征(语言学) 灵敏度(控制系统) 模式识别(心理学) 数据挖掘 过程(计算) 集合(抽象数据类型) 细胞仪 特征选择 人工智能 数据集 层次聚类 算法 化学 细胞 哲学 语言学 生物化学 电子工程 工程类 程序设计语言 操作系统
作者
Mark Colasurdo,Laura Ferrer‐Font,Aaron Middlebrook,A Konecny,Martin Prlic,Josef Špidlen
出处
期刊:Cytometry Part B-clinical Cytometry [Wiley]
标识
DOI:10.1002/cyto.b.22216
摘要

Abstract Flow cytometry is a high‐throughput, high‐dimensional technique that generates large sets of single‐cell data. Prior to analyzing this data, it is common to exclude any events that contain two or more cells, multiplets, to ensure downstream analysis and quantification is of single‐cell events, singlets, only. The process of singlet discrimination is critical yet fundamentally subjective and time‐consuming; it is performed manually by the user, where the proper exclusion of multiplets depends on the user's expertise and often varies from experiment to experiment. To address this problem, we have developed an algorithm to automatically discriminate singlets from other unwanted events such as multiplets and debris. Using parameters derived from imaging, the algorithm first identifies high‐density clusters of events using a density‐based clustering algorithm, and then classifies the clusters based on their properties. Multiplets are discarded in the first step, while singlets are distinguished from debris in the second step. The algorithm can use different strategies on imaging feature selection‐based user's preferences and imaging features available. In addition, the relative importance of singlets precision vs. sensitivity can be further tweaked via a density coefficient adjustment. Twenty‐two datasets from various sites and of various cell types acquired on the BD FACSDiscover™ S8 Cell Sorter with CellView™ Image Technology were used to develop and validate the algorithm across multiple imaging feature sets. A consistent singlets precision >97% with a solid >88% sensitivity has been demonstrated with a LightLoss feature set and the default density coefficient. This work yields a high‐precision, high‐sensitivity algorithm capable of objective and automated singlet discrimination across multiple cell types using various imaging‐derived parameters. A free FlowJo™ Software plugin implementation is available for simple and reproducible singlet discrimination for use at the beginning of any user's workflow.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
张斯瑞发布了新的文献求助10
1秒前
深情安青应助诚心冬亦采纳,获得10
2秒前
艾小晗完成签到,获得积分10
3秒前
liuxi发布了新的文献求助10
3秒前
周凡淇发布了新的文献求助30
5秒前
程院发布了新的文献求助30
5秒前
可乐应助Ula采纳,获得10
6秒前
6秒前
雨淋沐风发布了新的文献求助10
6秒前
xx完成签到,获得积分10
7秒前
7秒前
研友_VZG7GZ应助痴情的念蕾采纳,获得10
7秒前
情怀应助lululu采纳,获得10
8秒前
乐乐应助善良的疯丫头采纳,获得10
8秒前
lvlei发布了新的文献求助10
8秒前
香蕉孤云完成签到,获得积分10
8秒前
汉堡包应助李东东采纳,获得10
8秒前
甜甜抽屉完成签到,获得积分10
9秒前
9秒前
9秒前
星辰大海应助Wowyx采纳,获得10
9秒前
10秒前
港岛妹妹完成签到 ,获得积分10
10秒前
11秒前
聪慧千亦发布了新的文献求助30
11秒前
善学以致用应助liuxi采纳,获得10
11秒前
xyl_507完成签到 ,获得积分0
12秒前
12秒前
12秒前
无能的狂怒2号完成签到,获得积分10
13秒前
13秒前
Owen应助edenz采纳,获得10
13秒前
只道寻常发布了新的文献求助10
14秒前
领导范儿应助yolo采纳,获得10
16秒前
聪慧千亦完成签到,获得积分10
16秒前
不田发布了新的文献求助10
17秒前
18秒前
李健应助程院采纳,获得10
18秒前
牦牛发布了新的文献求助10
19秒前
高分求助中
Evolution 3rd edition 1500
保险藏宝图 1000
Lire en communiste 1000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
Mathematics and Finite Element Discretizations of Incompressible Navier—Stokes Flows 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3183027
求助须知:如何正确求助?哪些是违规求助? 2833179
关于积分的说明 7992988
捐赠科研通 2495363
什么是DOI,文献DOI怎么找? 1331472
科研通“疑难数据库(出版商)”最低求助积分说明 636293
邀请新用户注册赠送积分活动 603474