SingletSeeker: an unsupervised clustering approach for automated singlet discrimination in cytometry

聚类分析 计算机科学 特征(语言学) 灵敏度(控制系统) 模式识别(心理学) 数据挖掘 过程(计算) 集合(抽象数据类型) 细胞仪 特征选择 人工智能 数据集 层次聚类 算法 化学 细胞 哲学 语言学 生物化学 电子工程 工程类 程序设计语言 操作系统
作者
Mark Colasurdo,Laura Ferrer‐Font,Aaron Middlebrook,A Konecny,Martin Prlic,Josef Špidlen
出处
期刊:Cytometry Part B-clinical Cytometry [Wiley]
标识
DOI:10.1002/cyto.b.22216
摘要

Abstract Flow cytometry is a high‐throughput, high‐dimensional technique that generates large sets of single‐cell data. Prior to analyzing this data, it is common to exclude any events that contain two or more cells, multiplets, to ensure downstream analysis and quantification is of single‐cell events, singlets, only. The process of singlet discrimination is critical yet fundamentally subjective and time‐consuming; it is performed manually by the user, where the proper exclusion of multiplets depends on the user's expertise and often varies from experiment to experiment. To address this problem, we have developed an algorithm to automatically discriminate singlets from other unwanted events such as multiplets and debris. Using parameters derived from imaging, the algorithm first identifies high‐density clusters of events using a density‐based clustering algorithm, and then classifies the clusters based on their properties. Multiplets are discarded in the first step, while singlets are distinguished from debris in the second step. The algorithm can use different strategies on imaging feature selection‐based user's preferences and imaging features available. In addition, the relative importance of singlets precision vs. sensitivity can be further tweaked via a density coefficient adjustment. Twenty‐two datasets from various sites and of various cell types acquired on the BD FACSDiscover™ S8 Cell Sorter with CellView™ Image Technology were used to develop and validate the algorithm across multiple imaging feature sets. A consistent singlets precision >97% with a solid >88% sensitivity has been demonstrated with a LightLoss feature set and the default density coefficient. This work yields a high‐precision, high‐sensitivity algorithm capable of objective and automated singlet discrimination across multiple cell types using various imaging‐derived parameters. A free FlowJo™ Software plugin implementation is available for simple and reproducible singlet discrimination for use at the beginning of any user's workflow.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
善学以致用应助熊蕾采纳,获得10
3秒前
5秒前
莫莫发布了新的文献求助10
5秒前
7秒前
齐正发布了新的文献求助20
9秒前
hu发布了新的文献求助10
10秒前
15秒前
15秒前
oyjq发布了新的文献求助10
18秒前
18秒前
博洋发布了新的文献求助10
19秒前
我是老大应助杨小王采纳,获得10
21秒前
hu完成签到,获得积分10
23秒前
ctt发布了新的文献求助30
23秒前
彭佳丽完成签到,获得积分10
25秒前
Salamenda完成签到,获得积分10
25秒前
甜美绣连完成签到,获得积分10
26秒前
博洋完成签到,获得积分10
28秒前
29秒前
30秒前
chengran发布了新的文献求助10
31秒前
大胆的夏天完成签到,获得积分10
32秒前
CY完成签到,获得积分10
32秒前
铝合金男孩完成签到,获得积分10
34秒前
蒋时晏发布了新的文献求助30
35秒前
简单初曼发布了新的文献求助30
35秒前
GSirius完成签到,获得积分10
36秒前
Owen应助Makta采纳,获得10
36秒前
sjsuA完成签到,获得积分10
37秒前
jql关注了科研通微信公众号
40秒前
41秒前
43秒前
汉堡包应助闫霄溯采纳,获得10
45秒前
kento应助树袋熊采纳,获得100
45秒前
嘟嘟等文章完成签到,获得积分10
45秒前
Bob222完成签到,获得积分10
46秒前
希希子发布了新的文献求助10
47秒前
冉冉完成签到,获得积分10
47秒前
48秒前
高分求助中
Spray / Wall-interaction Modelling by Dimensionless Data Analysis 2000
ALA生合成不全マウスでの糖代謝異常の分子機構解析 520
Aspects of Babylonian celestial divination: the lunar eclipse tablets of Enūma Anu Enlil 500
Mathematics and Finite Element Discretizations of Incompressible Navier—Stokes Flows 500
2024 Medicinal Chemistry Reviews 400
Dictionary of socialism 350
Geochemistry, 2nd Edition 地球化学经典教科书第二版 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3193765
求助须知:如何正确求助?哪些是违规求助? 2842801
关于积分的说明 8040855
捐赠科研通 2506900
什么是DOI,文献DOI怎么找? 1339459
科研通“疑难数据库(出版商)”最低求助积分说明 638755
邀请新用户注册赠送积分活动 607557