已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

SingletSeeker: an unsupervised clustering approach for automated singlet discrimination in cytometry

聚类分析 计算机科学 特征(语言学) 灵敏度(控制系统) 模式识别(心理学) 数据挖掘 过程(计算) 集合(抽象数据类型) 细胞仪 特征选择 人工智能 数据集 层次聚类 算法 化学 细胞 哲学 语言学 生物化学 电子工程 工程类 程序设计语言 操作系统
作者
Mark Colasurdo,Laura Ferrer‐Font,Aaron Middlebrook,A Konecny,Martin Prlic,Josef Špidlen
出处
期刊:Cytometry Part B-clinical Cytometry [Wiley]
标识
DOI:10.1002/cyto.b.22216
摘要

Abstract Flow cytometry is a high‐throughput, high‐dimensional technique that generates large sets of single‐cell data. Prior to analyzing this data, it is common to exclude any events that contain two or more cells, multiplets, to ensure downstream analysis and quantification is of single‐cell events, singlets, only. The process of singlet discrimination is critical yet fundamentally subjective and time‐consuming; it is performed manually by the user, where the proper exclusion of multiplets depends on the user's expertise and often varies from experiment to experiment. To address this problem, we have developed an algorithm to automatically discriminate singlets from other unwanted events such as multiplets and debris. Using parameters derived from imaging, the algorithm first identifies high‐density clusters of events using a density‐based clustering algorithm, and then classifies the clusters based on their properties. Multiplets are discarded in the first step, while singlets are distinguished from debris in the second step. The algorithm can use different strategies on imaging feature selection‐based user's preferences and imaging features available. In addition, the relative importance of singlets precision vs. sensitivity can be further tweaked via a density coefficient adjustment. Twenty‐two datasets from various sites and of various cell types acquired on the BD FACSDiscover™ S8 Cell Sorter with CellView™ Image Technology were used to develop and validate the algorithm across multiple imaging feature sets. A consistent singlets precision >97% with a solid >88% sensitivity has been demonstrated with a LightLoss feature set and the default density coefficient. This work yields a high‐precision, high‐sensitivity algorithm capable of objective and automated singlet discrimination across multiple cell types using various imaging‐derived parameters. A free FlowJo™ Software plugin implementation is available for simple and reproducible singlet discrimination for use at the beginning of any user's workflow.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
怕黑香氛完成签到 ,获得积分10
刚刚
皖医梁朝伟完成签到 ,获得积分10
1秒前
Tigher完成签到,获得积分10
2秒前
学术小猫完成签到,获得积分10
5秒前
小奥发布了新的文献求助10
6秒前
星期八完成签到,获得积分10
8秒前
10秒前
Hiraeth发布了新的文献求助10
10秒前
阜睿完成签到 ,获得积分10
11秒前
果冻完成签到,获得积分10
11秒前
千寻完成签到,获得积分10
13秒前
15秒前
15秒前
nuliguan完成签到 ,获得积分10
17秒前
19秒前
雪无痕3074发布了新的文献求助10
20秒前
21秒前
打打应助超人爱吃菠菜采纳,获得10
23秒前
24秒前
斯文败类应助Hiraeth采纳,获得10
25秒前
云上人完成签到 ,获得积分10
29秒前
雪无痕3074完成签到,获得积分20
32秒前
123zyx完成签到 ,获得积分10
33秒前
34秒前
神途发布了新的文献求助20
35秒前
beloved完成签到 ,获得积分10
36秒前
38秒前
榴莲姑娘完成签到 ,获得积分10
38秒前
嚯嚯李发布了新的文献求助10
39秒前
瑞曦完成签到 ,获得积分10
40秒前
封嘉懿应助有热心愿意采纳,获得10
41秒前
爆米花应助有热心愿意采纳,获得10
41秒前
41秒前
香蕉觅云应助有热心愿意采纳,获得10
41秒前
上官若男应助有热心愿意采纳,获得10
41秒前
葵花籽完成签到,获得积分10
42秒前
胡杉完成签到,获得积分10
42秒前
42秒前
源味怪豆完成签到,获得积分10
43秒前
学了个习发布了新的文献求助50
44秒前
高分求助中
Spray / Wall-interaction Modelling by Dimensionless Data Analysis 2000
Mixed-anion Compounds 600
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Earth System Geophysics 500
Aspects of Babylonian celestial divination: the lunar eclipse tablets of Enūma Anu Enlil 500
Geochemistry, 2nd Edition 地球化学经典教科书第二版 401
2024 Medicinal Chemistry Reviews 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3200574
求助须知:如何正确求助?哪些是违规求助? 2850386
关于积分的说明 8071853
捐赠科研通 2514153
什么是DOI,文献DOI怎么找? 1346899
科研通“疑难数据库(出版商)”最低求助积分说明 640268
邀请新用户注册赠送积分活动 610407