SingletSeeker: an unsupervised clustering approach for automated singlet discrimination in cytometry

聚类分析 计算机科学 特征(语言学) 灵敏度(控制系统) 模式识别(心理学) 数据挖掘 过程(计算) 集合(抽象数据类型) 细胞仪 特征选择 人工智能 数据集 层次聚类 算法 化学 细胞 哲学 语言学 生物化学 电子工程 工程类 程序设计语言 操作系统
作者
Mark Colasurdo,Laura Ferrer‐Font,Aaron Middlebrook,A Konecny,Martin Prlic,Josef Špidlen
出处
期刊:Cytometry Part B-clinical Cytometry [Wiley]
标识
DOI:10.1002/cyto.b.22216
摘要

Abstract Flow cytometry is a high‐throughput, high‐dimensional technique that generates large sets of single‐cell data. Prior to analyzing this data, it is common to exclude any events that contain two or more cells, multiplets, to ensure downstream analysis and quantification is of single‐cell events, singlets, only. The process of singlet discrimination is critical yet fundamentally subjective and time‐consuming; it is performed manually by the user, where the proper exclusion of multiplets depends on the user's expertise and often varies from experiment to experiment. To address this problem, we have developed an algorithm to automatically discriminate singlets from other unwanted events such as multiplets and debris. Using parameters derived from imaging, the algorithm first identifies high‐density clusters of events using a density‐based clustering algorithm, and then classifies the clusters based on their properties. Multiplets are discarded in the first step, while singlets are distinguished from debris in the second step. The algorithm can use different strategies on imaging feature selection‐based user's preferences and imaging features available. In addition, the relative importance of singlets precision vs. sensitivity can be further tweaked via a density coefficient adjustment. Twenty‐two datasets from various sites and of various cell types acquired on the BD FACSDiscover™ S8 Cell Sorter with CellView™ Image Technology were used to develop and validate the algorithm across multiple imaging feature sets. A consistent singlets precision >97% with a solid >88% sensitivity has been demonstrated with a LightLoss feature set and the default density coefficient. This work yields a high‐precision, high‐sensitivity algorithm capable of objective and automated singlet discrimination across multiple cell types using various imaging‐derived parameters. A free FlowJo™ Software plugin implementation is available for simple and reproducible singlet discrimination for use at the beginning of any user's workflow.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
脑洞疼应助迷路的煎蛋采纳,获得10
4秒前
4秒前
feng完成签到,获得积分10
5秒前
幸福的蜜粉完成签到,获得积分10
6秒前
由凡发布了新的文献求助10
8秒前
8秒前
今后应助liurenmm采纳,获得10
9秒前
9秒前
wanting发布了新的文献求助10
9秒前
10秒前
舒服的幼荷完成签到,获得积分10
12秒前
赵依梦完成签到,获得积分10
13秒前
畅快白亦发布了新的文献求助10
13秒前
seven发布了新的文献求助10
14秒前
隐形曼青应助Phonyeee采纳,获得10
14秒前
科研通AI2S应助迈克老狼采纳,获得10
15秒前
CC发布了新的文献求助10
15秒前
衣旧发布了新的文献求助10
15秒前
15秒前
15秒前
翟函完成签到,获得积分10
17秒前
CodeCraft应助玉f采纳,获得10
19秒前
汉堡包应助科研通管家采纳,获得10
19秒前
酷波er应助科研通管家采纳,获得10
19秒前
科研通AI2S应助科研通管家采纳,获得10
19秒前
科研通AI2S应助科研通管家采纳,获得10
19秒前
斯文败类应助科研通管家采纳,获得10
19秒前
科研通AI2S应助科研通管家采纳,获得10
19秒前
科研通AI2S应助科研通管家采纳,获得10
19秒前
领导范儿应助科研通管家采纳,获得10
19秒前
Orange应助科研通管家采纳,获得30
19秒前
英俊的铭应助科研通管家采纳,获得10
19秒前
干净海亦应助科研通管家采纳,获得10
19秒前
bkagyin应助科研通管家采纳,获得10
19秒前
良辰应助科研通管家采纳,获得10
19秒前
研友_VZG7GZ应助科研通管家采纳,获得50
19秒前
杨金城发布了新的文献求助10
19秒前
烟花应助timber采纳,获得10
21秒前
23秒前
seven完成签到,获得积分10
23秒前
高分求助中
Spray / Wall-interaction Modelling by Dimensionless Data Analysis 2000
Evolution 3rd edition 1500
保险藏宝图 1000
Lire en communiste 1000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
Mathematics and Finite Element Discretizations of Incompressible Navier—Stokes Flows 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3186173
求助须知:如何正确求助?哪些是违规求助? 2836480
关于积分的说明 8009392
捐赠科研通 2498827
什么是DOI,文献DOI怎么找? 1333943
科研通“疑难数据库(出版商)”最低求助积分说明 636959
邀请新用户注册赠送积分活动 604854