SingletSeeker: an unsupervised clustering approach for automated singlet discrimination in cytometry

聚类分析 计算机科学 特征(语言学) 灵敏度(控制系统) 模式识别(心理学) 数据挖掘 过程(计算) 集合(抽象数据类型) 细胞仪 特征选择 人工智能 数据集 层次聚类 算法 化学 细胞 哲学 语言学 生物化学 电子工程 工程类 程序设计语言 操作系统
作者
Mark Colasurdo,Laura Ferrer‐Font,Aaron Middlebrook,A Konecny,Martin Prlic,Josef Špidlen
出处
期刊:Cytometry Part B-clinical Cytometry [Wiley]
标识
DOI:10.1002/cyto.b.22216
摘要

Abstract Flow cytometry is a high‐throughput, high‐dimensional technique that generates large sets of single‐cell data. Prior to analyzing this data, it is common to exclude any events that contain two or more cells, multiplets, to ensure downstream analysis and quantification is of single‐cell events, singlets, only. The process of singlet discrimination is critical yet fundamentally subjective and time‐consuming; it is performed manually by the user, where the proper exclusion of multiplets depends on the user's expertise and often varies from experiment to experiment. To address this problem, we have developed an algorithm to automatically discriminate singlets from other unwanted events such as multiplets and debris. Using parameters derived from imaging, the algorithm first identifies high‐density clusters of events using a density‐based clustering algorithm, and then classifies the clusters based on their properties. Multiplets are discarded in the first step, while singlets are distinguished from debris in the second step. The algorithm can use different strategies on imaging feature selection‐based user's preferences and imaging features available. In addition, the relative importance of singlets precision vs. sensitivity can be further tweaked via a density coefficient adjustment. Twenty‐two datasets from various sites and of various cell types acquired on the BD FACSDiscover™ S8 Cell Sorter with CellView™ Image Technology were used to develop and validate the algorithm across multiple imaging feature sets. A consistent singlets precision >97% with a solid >88% sensitivity has been demonstrated with a LightLoss feature set and the default density coefficient. This work yields a high‐precision, high‐sensitivity algorithm capable of objective and automated singlet discrimination across multiple cell types using various imaging‐derived parameters. A free FlowJo™ Software plugin implementation is available for simple and reproducible singlet discrimination for use at the beginning of any user's workflow.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大气的远望完成签到,获得积分10
1秒前
希望天下0贩的0应助博宇采纳,获得10
1秒前
HeyHsc完成签到 ,获得积分10
2秒前
小兔牙大脸猫完成签到,获得积分20
3秒前
Evangeline发布了新的文献求助10
4秒前
小马甲应助djx123采纳,获得10
5秒前
没想好名字应助brucezheng采纳,获得10
7秒前
科研通AI2S应助vickyyao采纳,获得10
7秒前
Maksim发布了新的文献求助20
7秒前
Zhou发布了新的文献求助10
8秒前
唐不空发布了新的文献求助10
9秒前
10秒前
酷波er应助小晟采纳,获得10
10秒前
Tonald Yang发布了新的文献求助10
11秒前
Yu发布了新的文献求助30
11秒前
杭ge给杭ge的求助进行了留言
12秒前
森森发布了新的文献求助30
12秒前
刻苦以寒完成签到,获得积分10
12秒前
13秒前
14秒前
xuzhu0907完成签到,获得积分10
15秒前
庶民文献发布了新的文献求助10
16秒前
科目三应助ty-采纳,获得10
17秒前
djx123发布了新的文献求助10
19秒前
阔达白筠发布了新的文献求助10
19秒前
20秒前
JackMa应助hushan53采纳,获得10
21秒前
21秒前
无情的羊青完成签到,获得积分10
24秒前
Rue完成签到,获得积分10
25秒前
犹豫的夜完成签到,获得积分10
25秒前
小晟发布了新的文献求助10
25秒前
传奇3应助博宇采纳,获得10
26秒前
ugot完成签到,获得积分20
26秒前
26秒前
yinlaotou发布了新的文献求助10
27秒前
gengsumin完成签到,获得积分10
28秒前
28秒前
领导范儿应助Yu采纳,获得10
30秒前
hellozijia完成签到 ,获得积分10
30秒前
高分求助中
Spray / Wall-interaction Modelling by Dimensionless Data Analysis 2000
Evolution 3rd edition 1500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
ALA生合成不全マウスでの糖代謝異常の分子機構解析 520
Mathematics and Finite Element Discretizations of Incompressible Navier—Stokes Flows 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3188478
求助须知:如何正确求助?哪些是违规求助? 2837934
关于积分的说明 8017894
捐赠科研通 2500657
什么是DOI,文献DOI怎么找? 1335064
科研通“疑难数据库(出版商)”最低求助积分说明 637466
邀请新用户注册赠送积分活动 605496