SingletSeeker: an unsupervised clustering approach for automated singlet discrimination in cytometry

聚类分析 计算机科学 特征(语言学) 灵敏度(控制系统) 模式识别(心理学) 数据挖掘 过程(计算) 集合(抽象数据类型) 细胞仪 特征选择 人工智能 数据集 层次聚类 算法 化学 细胞 哲学 语言学 生物化学 电子工程 工程类 程序设计语言 操作系统
作者
Mark Colasurdo,Laura Ferrer‐Font,Aaron Middlebrook,A Konecny,Martin Prlic,Josef Špidlen
出处
期刊:Cytometry Part B-clinical Cytometry [Wiley]
标识
DOI:10.1002/cyto.b.22216
摘要

Abstract Flow cytometry is a high‐throughput, high‐dimensional technique that generates large sets of single‐cell data. Prior to analyzing this data, it is common to exclude any events that contain two or more cells, multiplets, to ensure downstream analysis and quantification is of single‐cell events, singlets, only. The process of singlet discrimination is critical yet fundamentally subjective and time‐consuming; it is performed manually by the user, where the proper exclusion of multiplets depends on the user's expertise and often varies from experiment to experiment. To address this problem, we have developed an algorithm to automatically discriminate singlets from other unwanted events such as multiplets and debris. Using parameters derived from imaging, the algorithm first identifies high‐density clusters of events using a density‐based clustering algorithm, and then classifies the clusters based on their properties. Multiplets are discarded in the first step, while singlets are distinguished from debris in the second step. The algorithm can use different strategies on imaging feature selection‐based user's preferences and imaging features available. In addition, the relative importance of singlets precision vs. sensitivity can be further tweaked via a density coefficient adjustment. Twenty‐two datasets from various sites and of various cell types acquired on the BD FACSDiscover™ S8 Cell Sorter with CellView™ Image Technology were used to develop and validate the algorithm across multiple imaging feature sets. A consistent singlets precision >97% with a solid >88% sensitivity has been demonstrated with a LightLoss feature set and the default density coefficient. This work yields a high‐precision, high‐sensitivity algorithm capable of objective and automated singlet discrimination across multiple cell types using various imaging‐derived parameters. A free FlowJo™ Software plugin implementation is available for simple and reproducible singlet discrimination for use at the beginning of any user's workflow.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
小何同学发布了新的文献求助10
3秒前
五月初夏完成签到,获得积分10
4秒前
weishen完成签到,获得积分10
4秒前
5秒前
果子完成签到,获得积分10
6秒前
格格完成签到,获得积分10
6秒前
CKX发布了新的文献求助10
7秒前
周周完成签到,获得积分10
7秒前
宫阙发布了新的文献求助10
7秒前
蹦跶蹦跶呆完成签到,获得积分10
11秒前
Bonnienuit完成签到 ,获得积分10
12秒前
ty完成签到,获得积分10
13秒前
14秒前
15秒前
甜蜜小事完成签到 ,获得积分10
15秒前
17秒前
嗷嗷嗷完成签到,获得积分10
17秒前
萧水白应助安安采纳,获得10
19秒前
木鱼完成签到,获得积分10
20秒前
20秒前
龙虾发票完成签到,获得积分10
21秒前
RW乾完成签到,获得积分10
22秒前
小何同学完成签到,获得积分10
22秒前
善学以致用应助斯文涔雨采纳,获得10
22秒前
CKX发布了新的文献求助10
25秒前
科目三应助丰富的咖啡采纳,获得10
25秒前
陈忱溪发布了新的文献求助10
26秒前
关琦完成签到,获得积分10
26秒前
石狗西完成签到 ,获得积分10
28秒前
萧水白应助安安采纳,获得10
30秒前
31秒前
不配.应助ty采纳,获得10
33秒前
宫阙完成签到,获得积分10
36秒前
NexusExplorer应助陈忱溪采纳,获得10
36秒前
BINBIN完成签到 ,获得积分10
36秒前
萧水白应助安安采纳,获得10
37秒前
完美世界应助sayso采纳,获得10
38秒前
zyw发布了新的文献求助10
39秒前
40秒前
高分求助中
Spray / Wall-interaction Modelling by Dimensionless Data Analysis 2000
Evolution 3rd edition 1500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
ALA生合成不全マウスでの糖代謝異常の分子機構解析 520
Mathematics and Finite Element Discretizations of Incompressible Navier—Stokes Flows 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3187833
求助须知:如何正确求助?哪些是违规求助? 2837552
关于积分的说明 8015738
捐赠科研通 2500230
什么是DOI,文献DOI怎么找? 1334789
科研通“疑难数据库(出版商)”最低求助积分说明 637296
邀请新用户注册赠送积分活动 605258