SingletSeeker: an unsupervised clustering approach for automated singlet discrimination in cytometry

聚类分析 计算机科学 特征(语言学) 灵敏度(控制系统) 模式识别(心理学) 数据挖掘 过程(计算) 集合(抽象数据类型) 细胞仪 特征选择 人工智能 数据集 层次聚类 算法 化学 细胞 哲学 语言学 生物化学 电子工程 工程类 程序设计语言 操作系统
作者
Mark Colasurdo,Laura Ferrer‐Font,Aaron Middlebrook,A Konecny,Martin Prlic,Josef Špidlen
出处
期刊:Cytometry Part B-clinical Cytometry [Wiley]
标识
DOI:10.1002/cyto.b.22216
摘要

Abstract Flow cytometry is a high‐throughput, high‐dimensional technique that generates large sets of single‐cell data. Prior to analyzing this data, it is common to exclude any events that contain two or more cells, multiplets, to ensure downstream analysis and quantification is of single‐cell events, singlets, only. The process of singlet discrimination is critical yet fundamentally subjective and time‐consuming; it is performed manually by the user, where the proper exclusion of multiplets depends on the user's expertise and often varies from experiment to experiment. To address this problem, we have developed an algorithm to automatically discriminate singlets from other unwanted events such as multiplets and debris. Using parameters derived from imaging, the algorithm first identifies high‐density clusters of events using a density‐based clustering algorithm, and then classifies the clusters based on their properties. Multiplets are discarded in the first step, while singlets are distinguished from debris in the second step. The algorithm can use different strategies on imaging feature selection‐based user's preferences and imaging features available. In addition, the relative importance of singlets precision vs. sensitivity can be further tweaked via a density coefficient adjustment. Twenty‐two datasets from various sites and of various cell types acquired on the BD FACSDiscover™ S8 Cell Sorter with CellView™ Image Technology were used to develop and validate the algorithm across multiple imaging feature sets. A consistent singlets precision >97% with a solid >88% sensitivity has been demonstrated with a LightLoss feature set and the default density coefficient. This work yields a high‐precision, high‐sensitivity algorithm capable of objective and automated singlet discrimination across multiple cell types using various imaging‐derived parameters. A free FlowJo™ Software plugin implementation is available for simple and reproducible singlet discrimination for use at the beginning of any user's workflow.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
华仔应助王耶耶采纳,获得10
刚刚
华老五完成签到,获得积分10
2秒前
3秒前
上官若男应助baby采纳,获得10
3秒前
刘予之发布了新的文献求助10
3秒前
VVV完成签到,获得积分10
4秒前
安然应助felix采纳,获得50
4秒前
梧wu完成签到,获得积分20
5秒前
6秒前
6秒前
顺心曼雁完成签到 ,获得积分10
6秒前
迷人凉面完成签到 ,获得积分10
9秒前
Yichen完成签到,获得积分10
9秒前
黑豆也完成签到,获得积分10
9秒前
10秒前
10秒前
筱雨发布了新的文献求助10
11秒前
哆啦梦发布了新的文献求助20
13秒前
自信晟睿完成签到,获得积分10
13秒前
调研昵称发布了新的文献求助20
14秒前
16秒前
乐乐应助zhao123123采纳,获得10
16秒前
cyy完成签到,获得积分10
17秒前
去小岛上流浪完成签到,获得积分10
17秒前
17秒前
十七发布了新的文献求助10
17秒前
lm完成签到,获得积分10
18秒前
19秒前
baby发布了新的文献求助10
21秒前
22秒前
王耶耶发布了新的文献求助10
22秒前
23秒前
cao完成签到,获得积分10
24秒前
山奈完成签到,获得积分10
24秒前
丙泊酚完成签到,获得积分10
24秒前
24秒前
月光斩完成签到,获得积分10
24秒前
十七完成签到,获得积分10
25秒前
张佳佳完成签到,获得积分10
26秒前
TYM发布了新的文献求助10
27秒前
高分求助中
Spray / Wall-interaction Modelling by Dimensionless Data Analysis 2000
Mathematics and Finite Element Discretizations of Incompressible Navier—Stokes Flows 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
2-Acetyl-1-pyrroline: an important aroma component of cooked rice 500
A real-time energy management strategy based on fuzzy control and ECMS for PHEVs 400
Handbook on People's China (1957) 400
2024 Medicinal Chemistry Reviews 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3189569
求助须知:如何正确求助?哪些是违规求助? 2838949
关于积分的说明 8022128
捐赠科研通 2501783
什么是DOI,文献DOI怎么找? 1336023
科研通“疑难数据库(出版商)”最低求助积分说明 637750
邀请新用户注册赠送积分活动 605820