SingletSeeker: an unsupervised clustering approach for automated singlet discrimination in cytometry

聚类分析 计算机科学 特征(语言学) 灵敏度(控制系统) 模式识别(心理学) 数据挖掘 过程(计算) 集合(抽象数据类型) 细胞仪 特征选择 人工智能 数据集 层次聚类 算法 化学 细胞 哲学 语言学 生物化学 电子工程 工程类 程序设计语言 操作系统
作者
Mark Colasurdo,Laura Ferrer‐Font,Aaron Middlebrook,A Konecny,Martin Prlic,Josef Špidlen
出处
期刊:Cytometry Part B-clinical Cytometry [Wiley]
标识
DOI:10.1002/cyto.b.22216
摘要

Abstract Flow cytometry is a high‐throughput, high‐dimensional technique that generates large sets of single‐cell data. Prior to analyzing this data, it is common to exclude any events that contain two or more cells, multiplets, to ensure downstream analysis and quantification is of single‐cell events, singlets, only. The process of singlet discrimination is critical yet fundamentally subjective and time‐consuming; it is performed manually by the user, where the proper exclusion of multiplets depends on the user's expertise and often varies from experiment to experiment. To address this problem, we have developed an algorithm to automatically discriminate singlets from other unwanted events such as multiplets and debris. Using parameters derived from imaging, the algorithm first identifies high‐density clusters of events using a density‐based clustering algorithm, and then classifies the clusters based on their properties. Multiplets are discarded in the first step, while singlets are distinguished from debris in the second step. The algorithm can use different strategies on imaging feature selection‐based user's preferences and imaging features available. In addition, the relative importance of singlets precision vs. sensitivity can be further tweaked via a density coefficient adjustment. Twenty‐two datasets from various sites and of various cell types acquired on the BD FACSDiscover™ S8 Cell Sorter with CellView™ Image Technology were used to develop and validate the algorithm across multiple imaging feature sets. A consistent singlets precision >97% with a solid >88% sensitivity has been demonstrated with a LightLoss feature set and the default density coefficient. This work yields a high‐precision, high‐sensitivity algorithm capable of objective and automated singlet discrimination across multiple cell types using various imaging‐derived parameters. A free FlowJo™ Software plugin implementation is available for simple and reproducible singlet discrimination for use at the beginning of any user's workflow.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
简简单单完成签到,获得积分10
刚刚
1秒前
1秒前
小松鼠完成签到 ,获得积分10
1秒前
月亮完成签到 ,获得积分10
1秒前
CHAIZH发布了新的文献求助10
2秒前
mengdewen发布了新的文献求助10
2秒前
pink发布了新的文献求助10
2秒前
今后应助萧忆情xyq采纳,获得10
3秒前
3秒前
68完成签到,获得积分10
4秒前
完美世界应助davide采纳,获得10
4秒前
qupei完成签到 ,获得积分10
4秒前
4秒前
小豆包科研冲刺者完成签到,获得积分10
5秒前
5秒前
5秒前
bkagyin应助badada采纳,获得10
6秒前
完美世界应助mengdewen采纳,获得30
6秒前
可爱的函函应助franca2005采纳,获得10
7秒前
7秒前
饼子完成签到 ,获得积分10
8秒前
跳跃完成签到,获得积分10
8秒前
yuchenovo发布了新的文献求助10
8秒前
罐罐儿应助zzt采纳,获得10
9秒前
无忧无虑发布了新的文献求助10
9秒前
鱼啊鱼发布了新的文献求助10
9秒前
含糊发布了新的文献求助10
9秒前
10秒前
繁荣的芒果完成签到,获得积分20
10秒前
雅姗灬姗完成签到,获得积分10
10秒前
阿静完成签到,获得积分20
10秒前
10秒前
英俊的铭应助学术蝗虫采纳,获得10
10秒前
10秒前
11秒前
左鞅完成签到 ,获得积分10
12秒前
帅气若风完成签到,获得积分10
13秒前
13秒前
13秒前
高分求助中
Earth System Geophysics 1000
Write Like a Chemist: A Guide and Resource (第二版) 600
Mixed-anion Compounds 600
Language injustice and social equity in EMI policies in China 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Aspects of Babylonian celestial divination: the lunar eclipse tablets of Enūma Anu Enlil 500
Geochemistry, 2nd Edition 地球化学经典教科书第二版 401
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3201486
求助须知:如何正确求助?哪些是违规求助? 2851160
关于积分的说明 8076392
捐赠科研通 2515110
什么是DOI,文献DOI怎么找? 1347718
科研通“疑难数据库(出版商)”最低求助积分说明 640457
邀请新用户注册赠送积分活动 610743