SingletSeeker: an unsupervised clustering approach for automated singlet discrimination in cytometry

聚类分析 计算机科学 特征(语言学) 灵敏度(控制系统) 模式识别(心理学) 数据挖掘 过程(计算) 集合(抽象数据类型) 细胞仪 特征选择 人工智能 数据集 层次聚类 算法 化学 细胞 哲学 语言学 生物化学 电子工程 工程类 程序设计语言 操作系统
作者
Mark Colasurdo,Laura Ferrer‐Font,Aaron Middlebrook,A Konecny,Martin Prlic,Josef Špidlen
出处
期刊:Cytometry Part B-clinical Cytometry [Wiley]
标识
DOI:10.1002/cyto.b.22216
摘要

Abstract Flow cytometry is a high‐throughput, high‐dimensional technique that generates large sets of single‐cell data. Prior to analyzing this data, it is common to exclude any events that contain two or more cells, multiplets, to ensure downstream analysis and quantification is of single‐cell events, singlets, only. The process of singlet discrimination is critical yet fundamentally subjective and time‐consuming; it is performed manually by the user, where the proper exclusion of multiplets depends on the user's expertise and often varies from experiment to experiment. To address this problem, we have developed an algorithm to automatically discriminate singlets from other unwanted events such as multiplets and debris. Using parameters derived from imaging, the algorithm first identifies high‐density clusters of events using a density‐based clustering algorithm, and then classifies the clusters based on their properties. Multiplets are discarded in the first step, while singlets are distinguished from debris in the second step. The algorithm can use different strategies on imaging feature selection‐based user's preferences and imaging features available. In addition, the relative importance of singlets precision vs. sensitivity can be further tweaked via a density coefficient adjustment. Twenty‐two datasets from various sites and of various cell types acquired on the BD FACSDiscover™ S8 Cell Sorter with CellView™ Image Technology were used to develop and validate the algorithm across multiple imaging feature sets. A consistent singlets precision >97% with a solid >88% sensitivity has been demonstrated with a LightLoss feature set and the default density coefficient. This work yields a high‐precision, high‐sensitivity algorithm capable of objective and automated singlet discrimination across multiple cell types using various imaging‐derived parameters. A free FlowJo™ Software plugin implementation is available for simple and reproducible singlet discrimination for use at the beginning of any user's workflow.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
南瓜完成签到,获得积分10
刚刚
黑色的白鲸完成签到,获得积分10
刚刚
妍yan完成签到,获得积分10
2秒前
疯狂的青亦完成签到,获得积分10
2秒前
pb完成签到 ,获得积分10
2秒前
盛开的芒果完成签到,获得积分10
3秒前
JackFan完成签到,获得积分10
4秒前
舒心的茗完成签到,获得积分10
4秒前
小李完成签到,获得积分10
4秒前
4秒前
dominic12361完成签到 ,获得积分10
5秒前
5秒前
微笑书白完成签到,获得积分10
5秒前
领导范儿应助sylnd126采纳,获得10
6秒前
惟ai0713完成签到 ,获得积分10
7秒前
Loooong完成签到,获得积分0
7秒前
HUSHIYI完成签到,获得积分10
8秒前
9秒前
123发布了新的文献求助10
9秒前
哦啦啦啦完成签到 ,获得积分20
10秒前
MRIFFF完成签到,获得积分10
10秒前
迷人的煎饼完成签到,获得积分10
10秒前
ssss完成签到,获得积分10
11秒前
瞳梦完成签到,获得积分10
12秒前
WHB完成签到,获得积分10
13秒前
jun完成签到,获得积分10
14秒前
zzll0301完成签到,获得积分10
14秒前
科研通AI2S应助ssss采纳,获得10
14秒前
jiangxiaoyu发布了新的文献求助10
16秒前
2010完成签到,获得积分10
16秒前
子非鱼完成签到,获得积分10
17秒前
烯灯完成签到,获得积分10
18秒前
子清完成签到,获得积分0
19秒前
何志广完成签到 ,获得积分10
19秒前
月亮煮粥完成签到,获得积分10
19秒前
知行者完成签到,获得积分10
20秒前
十一完成签到,获得积分10
20秒前
syx完成签到,获得积分10
21秒前
ttkd11完成签到,获得积分10
21秒前
阔达的太阳完成签到,获得积分20
22秒前
高分求助中
Spray / Wall-interaction Modelling by Dimensionless Data Analysis 2000
ALA生合成不全マウスでの糖代謝異常の分子機構解析 520
安全防范技术与工程 500
Mathematics and Finite Element Discretizations of Incompressible Navier—Stokes Flows 500
2024 Medicinal Chemistry Reviews 400
Актуализированная стратиграфическая схема триасовых отложений Прикаспийского региона. Объяснительная записка 360
Dictionary of socialism 350
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3192734
求助须知:如何正确求助?哪些是违规求助? 2841829
关于积分的说明 8035270
捐赠科研通 2505544
什么是DOI,文献DOI怎么找? 1338664
科研通“疑难数据库(出版商)”最低求助积分说明 638404
邀请新用户注册赠送积分活动 606972