SingletSeeker: an unsupervised clustering approach for automated singlet discrimination in cytometry

聚类分析 计算机科学 特征(语言学) 灵敏度(控制系统) 模式识别(心理学) 数据挖掘 过程(计算) 集合(抽象数据类型) 细胞仪 特征选择 人工智能 数据集 层次聚类 算法 化学 细胞 哲学 语言学 生物化学 电子工程 工程类 程序设计语言 操作系统
作者
Mark Colasurdo,Laura Ferrer‐Font,Aaron Middlebrook,A Konecny,Martin Prlic,Josef Špidlen
出处
期刊:Cytometry Part B-clinical Cytometry [Wiley]
标识
DOI:10.1002/cyto.b.22216
摘要

Abstract Flow cytometry is a high‐throughput, high‐dimensional technique that generates large sets of single‐cell data. Prior to analyzing this data, it is common to exclude any events that contain two or more cells, multiplets, to ensure downstream analysis and quantification is of single‐cell events, singlets, only. The process of singlet discrimination is critical yet fundamentally subjective and time‐consuming; it is performed manually by the user, where the proper exclusion of multiplets depends on the user's expertise and often varies from experiment to experiment. To address this problem, we have developed an algorithm to automatically discriminate singlets from other unwanted events such as multiplets and debris. Using parameters derived from imaging, the algorithm first identifies high‐density clusters of events using a density‐based clustering algorithm, and then classifies the clusters based on their properties. Multiplets are discarded in the first step, while singlets are distinguished from debris in the second step. The algorithm can use different strategies on imaging feature selection‐based user's preferences and imaging features available. In addition, the relative importance of singlets precision vs. sensitivity can be further tweaked via a density coefficient adjustment. Twenty‐two datasets from various sites and of various cell types acquired on the BD FACSDiscover™ S8 Cell Sorter with CellView™ Image Technology were used to develop and validate the algorithm across multiple imaging feature sets. A consistent singlets precision >97% with a solid >88% sensitivity has been demonstrated with a LightLoss feature set and the default density coefficient. This work yields a high‐precision, high‐sensitivity algorithm capable of objective and automated singlet discrimination across multiple cell types using various imaging‐derived parameters. A free FlowJo™ Software plugin implementation is available for simple and reproducible singlet discrimination for use at the beginning of any user's workflow.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
香蕉觅云应助lixiuping采纳,获得10
刚刚
耀学菜菜应助Victoria采纳,获得10
刚刚
霸气梦菲完成签到 ,获得积分10
1秒前
Su发布了新的文献求助20
1秒前
Chenglx完成签到,获得积分10
1秒前
哈哈环完成签到 ,获得积分10
1秒前
研友_VZG7GZ应助OvO采纳,获得10
1秒前
852应助刻苦的幻巧采纳,获得10
2秒前
2秒前
善学以致用应助zjq采纳,获得10
3秒前
Citrus完成签到,获得积分10
3秒前
霸气断秋发布了新的文献求助30
4秒前
ca0ca0完成签到,获得积分10
4秒前
惜寒完成签到 ,获得积分10
5秒前
hzx应助优秀的小土豆采纳,获得10
6秒前
赶紧毕业完成签到,获得积分10
8秒前
9秒前
9秒前
倒霉兔子完成签到,获得积分0
10秒前
sanben完成签到,获得积分10
11秒前
12秒前
善良的汉堡完成签到 ,获得积分10
13秒前
14秒前
和谐的映梦完成签到,获得积分10
14秒前
何小明完成签到 ,获得积分10
14秒前
15秒前
16秒前
你说要叫啥完成签到,获得积分10
17秒前
粽子发布了新的文献求助10
19秒前
漂彭发布了新的文献求助10
20秒前
所所应助童童采纳,获得10
21秒前
21秒前
xjy完成签到,获得积分10
21秒前
22秒前
大猫丶完成签到,获得积分10
22秒前
π1发布了新的文献求助10
22秒前
Owen应助喜悦依白采纳,获得20
23秒前
24秒前
25秒前
高分求助中
Spray / Wall-interaction Modelling by Dimensionless Data Analysis 2000
Evolution 3rd edition 1500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
ALA生合成不全マウスでの糖代謝異常の分子機構解析 520
Mathematics and Finite Element Discretizations of Incompressible Navier—Stokes Flows 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3187400
求助须知:如何正确求助?哪些是违规求助? 2837319
关于积分的说明 8014234
捐赠科研通 2499895
什么是DOI,文献DOI怎么找? 1334620
科研通“疑难数据库(出版商)”最低求助积分说明 637194
邀请新用户注册赠送积分活动 605176