SingletSeeker: an unsupervised clustering approach for automated singlet discrimination in cytometry

聚类分析 计算机科学 特征(语言学) 灵敏度(控制系统) 模式识别(心理学) 数据挖掘 过程(计算) 集合(抽象数据类型) 细胞仪 特征选择 人工智能 数据集 层次聚类 算法 化学 细胞 哲学 语言学 生物化学 电子工程 工程类 程序设计语言 操作系统
作者
Mark Colasurdo,Laura Ferrer‐Font,Aaron Middlebrook,A Konecny,Martin Prlic,Josef Špidlen
出处
期刊:Cytometry Part B-clinical Cytometry [Wiley]
标识
DOI:10.1002/cyto.b.22216
摘要

Abstract Flow cytometry is a high‐throughput, high‐dimensional technique that generates large sets of single‐cell data. Prior to analyzing this data, it is common to exclude any events that contain two or more cells, multiplets, to ensure downstream analysis and quantification is of single‐cell events, singlets, only. The process of singlet discrimination is critical yet fundamentally subjective and time‐consuming; it is performed manually by the user, where the proper exclusion of multiplets depends on the user's expertise and often varies from experiment to experiment. To address this problem, we have developed an algorithm to automatically discriminate singlets from other unwanted events such as multiplets and debris. Using parameters derived from imaging, the algorithm first identifies high‐density clusters of events using a density‐based clustering algorithm, and then classifies the clusters based on their properties. Multiplets are discarded in the first step, while singlets are distinguished from debris in the second step. The algorithm can use different strategies on imaging feature selection‐based user's preferences and imaging features available. In addition, the relative importance of singlets precision vs. sensitivity can be further tweaked via a density coefficient adjustment. Twenty‐two datasets from various sites and of various cell types acquired on the BD FACSDiscover™ S8 Cell Sorter with CellView™ Image Technology were used to develop and validate the algorithm across multiple imaging feature sets. A consistent singlets precision >97% with a solid >88% sensitivity has been demonstrated with a LightLoss feature set and the default density coefficient. This work yields a high‐precision, high‐sensitivity algorithm capable of objective and automated singlet discrimination across multiple cell types using various imaging‐derived parameters. A free FlowJo™ Software plugin implementation is available for simple and reproducible singlet discrimination for use at the beginning of any user's workflow.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
chenying完成签到 ,获得积分0
1秒前
J陆lululu完成签到 ,获得积分10
9秒前
丝丢皮得完成签到 ,获得积分10
17秒前
小香香完成签到 ,获得积分10
18秒前
兔兔完成签到 ,获得积分10
21秒前
乐乐完成签到,获得积分10
21秒前
蓝兰发布了新的文献求助10
27秒前
俊逸吐司完成签到 ,获得积分10
29秒前
林黛玉倒拔垂杨柳完成签到 ,获得积分10
35秒前
畅快的谷秋完成签到 ,获得积分10
36秒前
大方的笑萍完成签到 ,获得积分10
38秒前
zhu97完成签到 ,获得积分10
38秒前
chenle_98完成签到,获得积分10
45秒前
松松完成签到 ,获得积分10
52秒前
星辰大海应助ak47采纳,获得10
55秒前
1分钟前
在九月完成签到 ,获得积分10
1分钟前
Wanderer完成签到 ,获得积分10
1分钟前
shihui发布了新的文献求助10
1分钟前
momo完成签到,获得积分10
1分钟前
九五式自动步枪完成签到 ,获得积分10
1分钟前
Owen应助chenle_98采纳,获得10
1分钟前
文静的紫萱完成签到,获得积分10
1分钟前
大模型应助shihui采纳,获得10
1分钟前
沙子完成签到 ,获得积分0
1分钟前
游01完成签到 ,获得积分10
1分钟前
起风了完成签到 ,获得积分10
1分钟前
2分钟前
eureka完成签到,获得积分10
2分钟前
2分钟前
糖豆子发布了新的文献求助30
2分钟前
雷九万班完成签到 ,获得积分10
2分钟前
2分钟前
atobezy发布了新的文献求助10
2分钟前
DAHove完成签到 ,获得积分10
2分钟前
笨笨向南发布了新的文献求助30
2分钟前
研友_VZG7GZ应助RRRR采纳,获得10
2分钟前
汕头凯奇完成签到,获得积分10
2分钟前
精明寒松完成签到 ,获得积分10
2分钟前
emxzemxz完成签到 ,获得积分10
2分钟前
高分求助中
Spray / Wall-interaction Modelling by Dimensionless Data Analysis 2000
Evolution 3rd edition 1500
保险藏宝图 1000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
Mathematics and Finite Element Discretizations of Incompressible Navier—Stokes Flows 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3186894
求助须知:如何正确求助?哪些是违规求助? 2836960
关于积分的说明 8011996
捐赠科研通 2499375
什么是DOI,文献DOI怎么找? 1334354
科研通“疑难数据库(出版商)”最低求助积分说明 637170
邀请新用户注册赠送积分活动 605071