Pharmacological mechanisms of carvacrol against hepatocellular carcinoma by network pharmacology and molecular docking

香芹酚 肝细胞癌 药理学 对接(动物) 医学 计算生物学 癌症研究 生物 护理部 抗菌剂 微生物学
作者
Lu Liu,Ping Yu,Zhongwei Zhao,Hongyuan Yang,Ri‐Sheng Yu
出处
期刊:Technology and Health Care [IOS Press]
标识
DOI:10.1177/09287329241306192
摘要

Background Preclinical studies have demonstrated that carvacrol possesses various biological and pharmacological properties, including anti-hepatocellular carcinoma (HCC) effects. However, the molecular basis of its therapeutic action on HCC remains unclear. Objective The aim of this study was to investigate and further validate the multi-target therapeutic mechanism of carvacrol against HCC. Methods The chemical structure of carvacrol was obtained from the PubChem database, and its potential targets were identified using SwissTargetPrediction, HERB, and BATMAN-TCM. HCC-specific genes were screened from the TCGA-LIHC cohort. The therapeutic targets of carvacrol against HCC were determined through the intersection of these datasets. Subsequently, a multivariate Cox regression prognostic model was established. Molecular docking was performed to analyze the interactions between carvacrol and its therapeutic targets. Additionally, molecular dynamics simulations were conducted to validate the molecular docking results using Discovery Studio 2019 software. Results A total of 223 carvacrol targets and 882 HCC-specific genes were identified. Fifteen therapeutic targets of carvacrol against HCC were obtained, including CA2, AR, ALB, AURKA, ALPL, EPHX2, BCHE, IL1RN, AGRN, CRP, DMGDH, APOA1, SOX9, HPX, and CHKA. The prognostic model accurately and independently predicted survival outcomes. AGRN and AURKA were significantly associated with HCC overall survival. Molecular docking and molecular dynamics simulations demonstrated that carvacrol exhibited strong potential for stable binding to the therapeutic targets AGRN and AURKA. Conclusion Our findings elucidate the multi-target mechanism of action of carvacrol against HCC, providing a foundation for future research on its application in HCC management.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
冰销雪释完成签到,获得积分10
1秒前
Wacky完成签到,获得积分10
1秒前
Jerry完成签到,获得积分10
2秒前
2秒前
123完成签到 ,获得积分10
7秒前
忧心的若云完成签到,获得积分10
8秒前
安安滴滴完成签到 ,获得积分10
11秒前
子春完成签到 ,获得积分10
14秒前
看文献完成签到,获得积分10
19秒前
h w wang完成签到,获得积分10
22秒前
alvin完成签到,获得积分10
23秒前
大个应助罗博超采纳,获得10
24秒前
精神的精神病完成签到,获得积分10
25秒前
大力的诗蕾完成签到 ,获得积分10
26秒前
ZERO完成签到,获得积分10
26秒前
29秒前
活力芝麻完成签到 ,获得积分10
31秒前
36秒前
畅快的谷秋完成签到 ,获得积分10
39秒前
断鸿完成签到 ,获得积分10
39秒前
科研狗完成签到 ,获得积分10
39秒前
没头脑和不高兴完成签到,获得积分10
40秒前
青青完成签到 ,获得积分10
41秒前
SC完成签到 ,获得积分10
42秒前
温暖从梦完成签到,获得积分20
42秒前
淳于白凝完成签到,获得积分10
42秒前
罗博超发布了新的文献求助10
42秒前
43秒前
狂野以松完成签到,获得积分10
43秒前
匆匆完成签到,获得积分10
44秒前
无言完成签到 ,获得积分10
47秒前
单纯乘风完成签到 ,获得积分10
47秒前
谢尔顿完成签到,获得积分10
49秒前
魔幻海豚完成签到 ,获得积分10
50秒前
ljn完成签到 ,获得积分10
50秒前
健壮的芷容完成签到,获得积分10
51秒前
君君完成签到,获得积分10
51秒前
罗博超完成签到,获得积分10
52秒前
影像大侠完成签到,获得积分10
53秒前
黄花完成签到 ,获得积分10
54秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
Dynamika przenośników łańcuchowych 600
The King's Magnates: A Study of the Highest Officials of the Neo-Assyrian Empire 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3539146
求助须知:如何正确求助?哪些是违规求助? 3116731
关于积分的说明 9326648
捐赠科研通 2814672
什么是DOI,文献DOI怎么找? 1547028
邀请新用户注册赠送积分活动 720722
科研通“疑难数据库(出版商)”最低求助积分说明 712201