A Machine Learning Approach for the Prediction of Severe Acute Kidney Injury Following Traumatic Brain Injury

医学 格拉斯哥昏迷指数 创伤性脑损伤 接收机工作特性 急性肾损伤 重症监护室 置信区间 曲线下面积 急诊医学 入射(几何) 回顾性队列研究 重症监护 重症监护医学 内科学 外科 物理 光学 精神科
作者
Chi Peng,Fan Yang,Lulu Li,Liwei Peng,Jian Yu,Peng Wang,Zhichao Jin
出处
期刊:Neurocritical Care [Springer Science+Business Media]
卷期号:38 (2): 335-344 被引量:8
标识
DOI:10.1007/s12028-022-01606-z
摘要

BackgroundAcute kidney injury (AKI), a prevalent non-neurological complication following traumatic brain injury (TBI), is a major clinical issue with an unfavorable prognosis. This study aimed to develop and validate machine learning models to predict severe AKI (stage 3 or greater) incidence in patients with TBI.MethodsA retrospective cohort study was conducted by using two public databases: the Medical Information Mart for Intensive Care IV (MIMIC)-IV and the eICU Collaborative Research Database (eICU-CRD). Recursive feature elimination was used to select candidate predictors obtained within 24 h of intensive care unit admission. The area under the curve and decision curve analysis curves were used to determine the discriminatory ability. On the other hand, the calibration curve was employed to evaluate the calibrated performance of the newly developed machine learning models.ResultsIn the MIMIC-IV database, there were 808 patients diagnosed with moderate and severe TBI (msTBI) (msTBI is defined as Glasgow Coma Score < 12). Of these, 60 (7.43%) patients experienced severe AKI. External validation in the eICU-CRD indicated that the random forest (RF) model had the highest area under the curve of 0.819 (95% confidence interval 0.783–0.851). Furthermore, in the calibration curve, the RF model was well calibrated (P = 0.795).ConclusionsIn this study, the RF model demonstrated better discrimination in predicting severe AKI than other models. An online calculator could facilitate its application, potentially improving the early detection of severe AKI and subsequently improving the clinical outcomes among patients with msTBI.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sddd发布了新的文献求助20
刚刚
摩卡发布了新的文献求助150
1秒前
脑洞疼应助hiahia采纳,获得10
2秒前
2秒前
2秒前
霜糖完成签到,获得积分10
2秒前
周冷之完成签到 ,获得积分10
3秒前
revew666完成签到,获得积分10
3秒前
4秒前
4秒前
5秒前
汀兰完成签到,获得积分10
5秒前
逍遥猪皮发布了新的文献求助10
5秒前
暖暖发布了新的文献求助50
5秒前
WWW发布了新的文献求助10
5秒前
我球呢完成签到,获得积分10
5秒前
王慧康发布了新的文献求助10
6秒前
花卷发布了新的文献求助20
6秒前
高挑的保温杯完成签到,获得积分10
8秒前
9秒前
9秒前
xny发布了新的文献求助10
9秒前
懦弱的难敌完成签到,获得积分10
9秒前
9秒前
10秒前
耸耸完成签到 ,获得积分10
10秒前
11秒前
Carmelo完成签到,获得积分10
12秒前
13秒前
13秒前
13秒前
在水一方应助sciscisci采纳,获得10
13秒前
苗条的傲丝完成签到,获得积分10
14秒前
不想干活应助可靠的南露采纳,获得10
14秒前
sxm发布了新的文献求助10
15秒前
15秒前
bxb发布了新的文献求助10
15秒前
李鑫完成签到,获得积分10
15秒前
朱莉发布了新的文献求助10
16秒前
SharonEggy发布了新的文献求助10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4602181
求助须知:如何正确求助?哪些是违规求助? 4011609
关于积分的说明 12419641
捐赠科研通 3691701
什么是DOI,文献DOI怎么找? 2035278
邀请新用户注册赠送积分活动 1068494
科研通“疑难数据库(出版商)”最低求助积分说明 953025