已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A Machine Learning Approach for the Prediction of Severe Acute Kidney Injury Following Traumatic Brain Injury

医学 格拉斯哥昏迷指数 创伤性脑损伤 接收机工作特性 急性肾损伤 重症监护室 置信区间 曲线下面积 急诊医学 入射(几何) 回顾性队列研究 重症监护 重症监护医学 内科学 外科 物理 光学 精神科
作者
Chi Peng,Fan Yang,Lulu Li,Liwei Peng,Jian Yu,Peng Wang,Zhichao Jin
出处
期刊:Neurocritical Care [Springer Nature]
卷期号:38 (2): 335-344 被引量:10
标识
DOI:10.1007/s12028-022-01606-z
摘要

BackgroundAcute kidney injury (AKI), a prevalent non-neurological complication following traumatic brain injury (TBI), is a major clinical issue with an unfavorable prognosis. This study aimed to develop and validate machine learning models to predict severe AKI (stage 3 or greater) incidence in patients with TBI.MethodsA retrospective cohort study was conducted by using two public databases: the Medical Information Mart for Intensive Care IV (MIMIC)-IV and the eICU Collaborative Research Database (eICU-CRD). Recursive feature elimination was used to select candidate predictors obtained within 24 h of intensive care unit admission. The area under the curve and decision curve analysis curves were used to determine the discriminatory ability. On the other hand, the calibration curve was employed to evaluate the calibrated performance of the newly developed machine learning models.ResultsIn the MIMIC-IV database, there were 808 patients diagnosed with moderate and severe TBI (msTBI) (msTBI is defined as Glasgow Coma Score < 12). Of these, 60 (7.43%) patients experienced severe AKI. External validation in the eICU-CRD indicated that the random forest (RF) model had the highest area under the curve of 0.819 (95% confidence interval 0.783–0.851). Furthermore, in the calibration curve, the RF model was well calibrated (P = 0.795).ConclusionsIn this study, the RF model demonstrated better discrimination in predicting severe AKI than other models. An online calculator could facilitate its application, potentially improving the early detection of severe AKI and subsequently improving the clinical outcomes among patients with msTBI.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
满意书包完成签到 ,获得积分10
刚刚
CCsouljump完成签到 ,获得积分10
刚刚
6秒前
顾矜应助小小采纳,获得10
6秒前
我是老大应助小小采纳,获得20
6秒前
善学以致用应助小小采纳,获得20
6秒前
NexusExplorer应助小小采纳,获得10
6秒前
Ava应助小小采纳,获得10
6秒前
科研通AI2S应助小小采纳,获得10
6秒前
11秒前
11秒前
Ava应助任性的棒棒糖采纳,获得10
15秒前
薇子完成签到,获得积分10
16秒前
17秒前
17秒前
17秒前
liuhongcan完成签到,获得积分10
19秒前
冷艳的鞯完成签到,获得积分10
21秒前
23秒前
24秒前
充电宝应助Harrison采纳,获得10
25秒前
26秒前
30秒前
31秒前
newplayer完成签到,获得积分10
33秒前
33秒前
红娘发布了新的文献求助10
34秒前
bzy发布了新的文献求助10
35秒前
35秒前
小二完成签到 ,获得积分10
37秒前
kklkl发布了新的文献求助10
38秒前
40秒前
星辰大海应助科研通管家采纳,获得10
40秒前
Orange应助科研通管家采纳,获得10
40秒前
nonosense发布了新的文献求助10
41秒前
FashionBoy应助科研通管家采纳,获得10
41秒前
天天快乐应助科研通管家采纳,获得10
41秒前
大模型应助科研通管家采纳,获得10
41秒前
dynamoo应助科研通管家采纳,获得10
41秒前
dynamoo应助科研通管家采纳,获得10
41秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 901
Item Response Theory 600
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5426055
求助须知:如何正确求助?哪些是违规求助? 4539788
关于积分的说明 14170577
捐赠科研通 4457597
什么是DOI,文献DOI怎么找? 2444610
邀请新用户注册赠送积分活动 1435561
关于科研通互助平台的介绍 1413014