A Machine Learning Approach for the Prediction of Severe Acute Kidney Injury Following Traumatic Brain Injury

医学 格拉斯哥昏迷指数 创伤性脑损伤 接收机工作特性 急性肾损伤 重症监护室 置信区间 曲线下面积 急诊医学 入射(几何) 回顾性队列研究 重症监护 重症监护医学 内科学 外科 物理 光学 精神科
作者
Chi Hsien Peng,Fan Yang,Lulu Li,Liwei Peng,Jian Yu,Peng Wang,Zhichao Jin
出处
期刊:Neurocritical Care [Springer Nature]
卷期号:38 (2): 335-344
标识
DOI:10.1007/s12028-022-01606-z
摘要

BackgroundAcute kidney injury (AKI), a prevalent non-neurological complication following traumatic brain injury (TBI), is a major clinical issue with an unfavorable prognosis. This study aimed to develop and validate machine learning models to predict severe AKI (stage 3 or greater) incidence in patients with TBI.MethodsA retrospective cohort study was conducted by using two public databases: the Medical Information Mart for Intensive Care IV (MIMIC)-IV and the eICU Collaborative Research Database (eICU-CRD). Recursive feature elimination was used to select candidate predictors obtained within 24 h of intensive care unit admission. The area under the curve and decision curve analysis curves were used to determine the discriminatory ability. On the other hand, the calibration curve was employed to evaluate the calibrated performance of the newly developed machine learning models.ResultsIn the MIMIC-IV database, there were 808 patients diagnosed with moderate and severe TBI (msTBI) (msTBI is defined as Glasgow Coma Score < 12). Of these, 60 (7.43%) patients experienced severe AKI. External validation in the eICU-CRD indicated that the random forest (RF) model had the highest area under the curve of 0.819 (95% confidence interval 0.783–0.851). Furthermore, in the calibration curve, the RF model was well calibrated (P = 0.795).ConclusionsIn this study, the RF model demonstrated better discrimination in predicting severe AKI than other models. An online calculator could facilitate its application, potentially improving the early detection of severe AKI and subsequently improving the clinical outcomes among patients with msTBI.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
假面绅士发布了新的文献求助10
刚刚
酷酷的从梦完成签到,获得积分10
1秒前
小花妹妹应助科研通管家采纳,获得10
2秒前
幸福发布了新的文献求助80
2秒前
在水一方应助科研通管家采纳,获得10
2秒前
sssssnape发布了新的文献求助10
2秒前
田様应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
2秒前
思源应助科研通管家采纳,获得10
2秒前
小二郎应助科研通管家采纳,获得10
2秒前
科研通AI2S应助科研通管家采纳,获得10
2秒前
福福气发布了新的文献求助10
2秒前
小二郎应助科研通管家采纳,获得10
2秒前
ephore应助科研通管家采纳,获得30
2秒前
iNk应助科研通管家采纳,获得10
3秒前
不喝奶茶完成签到,获得积分20
3秒前
在水一方应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
3秒前
肘子发布了新的文献求助10
3秒前
3秒前
lindsay完成签到,获得积分10
4秒前
大模型应助俏皮的映易采纳,获得10
5秒前
shenrenye发布了新的文献求助10
5秒前
范月月完成签到 ,获得积分10
5秒前
Nowind发布了新的文献求助10
5秒前
qq小兵发布了新的文献求助10
6秒前
6秒前
7秒前
JamesPei应助假面绅士采纳,获得10
10秒前
充电宝应助肘子采纳,获得10
10秒前
chengmin发布了新的文献求助10
11秒前
资浩阑发布了新的文献求助20
11秒前
我爱夏天发布了新的文献求助10
13秒前
13秒前
细心香薇完成签到,获得积分10
14秒前
福福气完成签到,获得积分10
15秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
Case Research: The Case Writing Process 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3141624
求助须知:如何正确求助?哪些是违规求助? 2792563
关于积分的说明 7803506
捐赠科研通 2448811
什么是DOI,文献DOI怎么找? 1302925
科研通“疑难数据库(出版商)”最低求助积分说明 626683
版权声明 601240