A Machine Learning Approach for the Prediction of Severe Acute Kidney Injury Following Traumatic Brain Injury

医学 格拉斯哥昏迷指数 创伤性脑损伤 接收机工作特性 急性肾损伤 重症监护室 置信区间 曲线下面积 急诊医学 入射(几何) 回顾性队列研究 重症监护 重症监护医学 内科学 外科 物理 光学 精神科
作者
Chi Peng,Fan Yang,Lulu Li,Liwei Peng,Jian Yu,Peng Wang,Zhichao Jin
出处
期刊:Neurocritical Care [Springer Science+Business Media]
卷期号:38 (2): 335-344 被引量:3
标识
DOI:10.1007/s12028-022-01606-z
摘要

BackgroundAcute kidney injury (AKI), a prevalent non-neurological complication following traumatic brain injury (TBI), is a major clinical issue with an unfavorable prognosis. This study aimed to develop and validate machine learning models to predict severe AKI (stage 3 or greater) incidence in patients with TBI.MethodsA retrospective cohort study was conducted by using two public databases: the Medical Information Mart for Intensive Care IV (MIMIC)-IV and the eICU Collaborative Research Database (eICU-CRD). Recursive feature elimination was used to select candidate predictors obtained within 24 h of intensive care unit admission. The area under the curve and decision curve analysis curves were used to determine the discriminatory ability. On the other hand, the calibration curve was employed to evaluate the calibrated performance of the newly developed machine learning models.ResultsIn the MIMIC-IV database, there were 808 patients diagnosed with moderate and severe TBI (msTBI) (msTBI is defined as Glasgow Coma Score < 12). Of these, 60 (7.43%) patients experienced severe AKI. External validation in the eICU-CRD indicated that the random forest (RF) model had the highest area under the curve of 0.819 (95% confidence interval 0.783–0.851). Furthermore, in the calibration curve, the RF model was well calibrated (P = 0.795).ConclusionsIn this study, the RF model demonstrated better discrimination in predicting severe AKI than other models. An online calculator could facilitate its application, potentially improving the early detection of severe AKI and subsequently improving the clinical outcomes among patients with msTBI.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
nojivv完成签到,获得积分10
1秒前
无奈尔曼发布了新的文献求助10
2秒前
科研通AI5应助咸鱼咸采纳,获得10
2秒前
qq完成签到 ,获得积分10
2秒前
小狗才喝冰红茶完成签到,获得积分10
4秒前
追寻的怜容完成签到,获得积分10
4秒前
4秒前
可乐完成签到 ,获得积分10
5秒前
Coo-kie99发布了新的文献求助10
7秒前
ganson完成签到 ,获得积分10
9秒前
丘比特应助苦酷采纳,获得10
11秒前
11秒前
Fuckacdemic完成签到,获得积分10
12秒前
16秒前
17秒前
如沐春风发布了新的文献求助10
22秒前
23秒前
JamesPei应助hy采纳,获得10
23秒前
玩命的绾绾完成签到 ,获得积分10
23秒前
24秒前
24秒前
25秒前
可爱的函函应助心海采纳,获得10
26秒前
李健的小迷弟应助dyy采纳,获得10
26秒前
27秒前
好久不见发布了新的文献求助10
28秒前
偏翩完成签到 ,获得积分10
28秒前
苦酷发布了新的文献求助10
29秒前
30秒前
31秒前
糖优优发布了新的文献求助10
31秒前
32秒前
34秒前
34秒前
文艺的青旋完成签到 ,获得积分10
34秒前
KGYM发布了新的文献求助10
34秒前
好运来发布了新的文献求助30
36秒前
37秒前
男神z发布了新的文献求助10
38秒前
青炀完成签到 ,获得积分10
40秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Ophthalmic Equipment Market 1500
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
いちばんやさしい生化学 500
The First Nuclear Era: The Life and Times of a Technological Fixer 500
Unusual formation of 4-diazo-3-nitriminopyrazoles upon acid nitration of pyrazolo[3,4-d][1,2,3]triazoles 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3672528
求助须知:如何正确求助?哪些是违规求助? 3228832
关于积分的说明 9782122
捐赠科研通 2939271
什么是DOI,文献DOI怎么找? 1610713
邀请新用户注册赠送积分活动 760709
科研通“疑难数据库(出版商)”最低求助积分说明 736198