A Machine Learning Approach for the Prediction of Severe Acute Kidney Injury Following Traumatic Brain Injury

医学 格拉斯哥昏迷指数 创伤性脑损伤 接收机工作特性 急性肾损伤 重症监护室 置信区间 曲线下面积 急诊医学 入射(几何) 回顾性队列研究 重症监护 重症监护医学 内科学 外科 物理 光学 精神科
作者
Chi Peng,Fan Yang,Lulu Li,Liwei Peng,Jian Yu,Peng Wang,Zhichao Jin
出处
期刊:Neurocritical Care [Springer Science+Business Media]
卷期号:38 (2): 335-344 被引量:5
标识
DOI:10.1007/s12028-022-01606-z
摘要

BackgroundAcute kidney injury (AKI), a prevalent non-neurological complication following traumatic brain injury (TBI), is a major clinical issue with an unfavorable prognosis. This study aimed to develop and validate machine learning models to predict severe AKI (stage 3 or greater) incidence in patients with TBI.MethodsA retrospective cohort study was conducted by using two public databases: the Medical Information Mart for Intensive Care IV (MIMIC)-IV and the eICU Collaborative Research Database (eICU-CRD). Recursive feature elimination was used to select candidate predictors obtained within 24 h of intensive care unit admission. The area under the curve and decision curve analysis curves were used to determine the discriminatory ability. On the other hand, the calibration curve was employed to evaluate the calibrated performance of the newly developed machine learning models.ResultsIn the MIMIC-IV database, there were 808 patients diagnosed with moderate and severe TBI (msTBI) (msTBI is defined as Glasgow Coma Score < 12). Of these, 60 (7.43%) patients experienced severe AKI. External validation in the eICU-CRD indicated that the random forest (RF) model had the highest area under the curve of 0.819 (95% confidence interval 0.783–0.851). Furthermore, in the calibration curve, the RF model was well calibrated (P = 0.795).ConclusionsIn this study, the RF model demonstrated better discrimination in predicting severe AKI than other models. An online calculator could facilitate its application, potentially improving the early detection of severe AKI and subsequently improving the clinical outcomes among patients with msTBI.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
寄草完成签到,获得积分10
刚刚
impulsive完成签到,获得积分10
1秒前
lisier完成签到,获得积分10
1秒前
Anonymous完成签到,获得积分10
2秒前
2秒前
2秒前
量子星尘发布了新的文献求助10
3秒前
程希悦发布了新的文献求助10
3秒前
毛彬发布了新的文献求助10
3秒前
3秒前
烟花应助烟雨梦兮采纳,获得10
3秒前
wuta完成签到,获得积分10
4秒前
4秒前
饱满的小霜完成签到,获得积分20
4秒前
123完成签到,获得积分10
4秒前
诺颜爱发布了新的文献求助30
4秒前
虚幻芷完成签到,获得积分10
5秒前
Hello应助自然有手就行采纳,获得10
5秒前
疯狂老登完成签到,获得积分10
6秒前
华仔应助舒一一采纳,获得10
6秒前
kasumin完成签到,获得积分10
7秒前
脑洞疼应助Moscrol采纳,获得10
7秒前
文献通完成签到 ,获得积分10
7秒前
甜蜜寄文发布了新的文献求助10
7秒前
Shina完成签到,获得积分10
8秒前
8秒前
二号发布了新的文献求助10
9秒前
小杜发布了新的文献求助10
10秒前
pureivy22完成签到,获得积分10
10秒前
冷酷严青发布了新的文献求助10
11秒前
刻苦千琴完成签到,获得积分10
11秒前
wlm完成签到,获得积分10
11秒前
栀初发布了新的文献求助10
11秒前
大模型应助木子西采纳,获得10
11秒前
蓝莓酱蘸橘子完成签到 ,获得积分10
12秒前
12秒前
善学以致用应助明亮不乐采纳,获得10
12秒前
egnaro完成签到,获得积分10
13秒前
无事小神仙完成签到 ,获得积分10
13秒前
14秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 330
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986722
求助须知:如何正确求助?哪些是违规求助? 3529207
关于积分的说明 11243810
捐赠科研通 3267638
什么是DOI,文献DOI怎么找? 1803822
邀请新用户注册赠送积分活动 881207
科研通“疑难数据库(出版商)”最低求助积分说明 808582