A Machine Learning Approach for the Prediction of Severe Acute Kidney Injury Following Traumatic Brain Injury

医学 格拉斯哥昏迷指数 创伤性脑损伤 接收机工作特性 急性肾损伤 重症监护室 置信区间 曲线下面积 急诊医学 入射(几何) 回顾性队列研究 重症监护 重症监护医学 内科学 外科 物理 精神科 光学
作者
Chi Peng,Fan Yang,Lulu Li,Liwei Peng,Jian Yu,Peng Wang,Zhichao Jin
出处
期刊:Neurocritical Care [Springer Science+Business Media]
卷期号:38 (2): 335-344 被引量:8
标识
DOI:10.1007/s12028-022-01606-z
摘要

BackgroundAcute kidney injury (AKI), a prevalent non-neurological complication following traumatic brain injury (TBI), is a major clinical issue with an unfavorable prognosis. This study aimed to develop and validate machine learning models to predict severe AKI (stage 3 or greater) incidence in patients with TBI.MethodsA retrospective cohort study was conducted by using two public databases: the Medical Information Mart for Intensive Care IV (MIMIC)-IV and the eICU Collaborative Research Database (eICU-CRD). Recursive feature elimination was used to select candidate predictors obtained within 24 h of intensive care unit admission. The area under the curve and decision curve analysis curves were used to determine the discriminatory ability. On the other hand, the calibration curve was employed to evaluate the calibrated performance of the newly developed machine learning models.ResultsIn the MIMIC-IV database, there were 808 patients diagnosed with moderate and severe TBI (msTBI) (msTBI is defined as Glasgow Coma Score < 12). Of these, 60 (7.43%) patients experienced severe AKI. External validation in the eICU-CRD indicated that the random forest (RF) model had the highest area under the curve of 0.819 (95% confidence interval 0.783–0.851). Furthermore, in the calibration curve, the RF model was well calibrated (P = 0.795).ConclusionsIn this study, the RF model demonstrated better discrimination in predicting severe AKI than other models. An online calculator could facilitate its application, potentially improving the early detection of severe AKI and subsequently improving the clinical outcomes among patients with msTBI.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
和谐尔蓝发布了新的文献求助10
刚刚
阳光的虔纹完成签到 ,获得积分10
刚刚
top发布了新的文献求助10
2秒前
玉婷发布了新的文献求助30
2秒前
科研通AI2S应助Alexgui采纳,获得10
3秒前
深情安青应助QQ采纳,获得10
3秒前
4秒前
4秒前
藜誌完成签到,获得积分10
6秒前
Linda完成签到,获得积分10
7秒前
chi完成签到,获得积分10
12秒前
浮游应助李闻闻采纳,获得10
14秒前
16秒前
顺其自然完成签到 ,获得积分10
17秒前
早早发布了新的文献求助10
18秒前
GEE完成签到,获得积分10
18秒前
小恐龙在外太空睡觉完成签到 ,获得积分10
19秒前
KKK完成签到,获得积分10
19秒前
黄慶玲发布了新的文献求助20
19秒前
大葡萄发布了新的文献求助10
20秒前
传奇3应助Alice采纳,获得10
20秒前
大个应助chi采纳,获得10
20秒前
21秒前
22秒前
23秒前
Young完成签到,获得积分10
23秒前
23秒前
菠菜发布了新的文献求助10
24秒前
25秒前
大花2完成签到,获得积分10
25秒前
欣喜访文完成签到,获得积分10
26秒前
赘婿应助lxy采纳,获得10
26秒前
大葡萄完成签到,获得积分10
27秒前
xmh发布了新的文献求助10
27秒前
biogarfield完成签到,获得积分10
28秒前
鱼鱼发布了新的文献求助10
28秒前
ren发布了新的文献求助10
29秒前
29秒前
今后应助cc采纳,获得10
29秒前
星星2完成签到,获得积分10
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 600
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
Modern Britain, 1750 to the Present (求助第2版!!!) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5178195
求助须知:如何正确求助?哪些是违规求助? 4366550
关于积分的说明 13595426
捐赠科研通 4216880
什么是DOI,文献DOI怎么找? 2312723
邀请新用户注册赠送积分活动 1311569
关于科研通互助平台的介绍 1259854