Predicting Heterogeneity in Patient Response to Morphine Treatment for Neonatal Opioid Withdrawal Syndrome

医学 美沙酮 吗啡 类阿片 药物治疗 队列 儿科 急诊医学 麻醉 内科学 受体
作者
Daniel Smolyak,Elizabeth Humphries,Abhinav Parikh,Mathangi Gopalakrishnan,Fulden Aycan,Margrét Vilborg Bjarnadóttir,Seth A. Ament,Dina El‐Metwally,Amber L. Beitelshees,Ritu Agarwal
出处
期刊:Clinical Pharmacology & Therapeutics [Wiley]
卷期号:114 (5): 1015-1022
标识
DOI:10.1002/cpt.3007
摘要

Infants with neonatal opioid withdrawal syndrome commonly receive morphine treatment to manage their withdrawal signs. However, the effectiveness of this pharmacotherapy in managing the infants' withdrawal signs vary widely. We sought to understand how information available early in infant monitoring can anticipate this treatment response, focusing on early modified Finnegan Neonatal Abstinence Scoring System (FNASS) scores, polygenic risk for opioid dependence (polygenic risk score (PRS)), and drug exposure. Using k-means clustering, we divided the 213 infants in our cohort into 3 groups based on their FNASS scores in the 12 hours before and after the initiation of pharmacotherapy. We found that these groups were pairwise significantly different for risk factors, including methadone exposure, and for in-hospital outcomes, including total morphine received, length of stay, and highest FNASS score. Whereas PRS was not predictive of receipt of treatment, PRS was pairwise significantly different between a subset of the groups. Using tree-based machine learning methods, we then constructed network graphs of the relationships among these groups, FNASS scores, PRS, drug exposures, and in-hospital outcomes. The resulting networks also showed meaningful connection between early FNASS scores and PRS, as well as between both of those and later in-hospital outcomes. These analyses present clinicians with the opportunity to better anticipate infant withdrawal progression and prepare accordingly, whether with expedited morphine treatment or non-pharmacotherapeutic alternative treatments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
shuimo521发布了新的文献求助10
刚刚
脑洞疼应助眯眯眼的老鼠采纳,获得10
刚刚
所所应助小离采纳,获得10
刚刚
我是老大应助杨天水采纳,获得10
刚刚
woodheart完成签到,获得积分10
1秒前
1秒前
JamesPei应助miaoww采纳,获得10
1秒前
王王完成签到,获得积分10
1秒前
Evelyn完成签到,获得积分10
1秒前
cxt1346完成签到 ,获得积分10
1秒前
bkagyin应助孙一雯采纳,获得30
2秒前
顺心迎南完成签到,获得积分20
2秒前
Emma完成签到,获得积分10
2秒前
CodeCraft应助微笑鹤采纳,获得11
3秒前
3秒前
天青色等烟雨完成签到 ,获得积分10
3秒前
坚强亦丝应助hziyu采纳,获得10
3秒前
tanhaili完成签到 ,获得积分10
3秒前
乐小佳完成签到,获得积分10
3秒前
yyyrrr完成签到,获得积分10
4秒前
4秒前
4秒前
李健应助hu970采纳,获得10
4秒前
JamesPei应助守护星星采纳,获得10
5秒前
kingwill应助科研小民工采纳,获得20
5秒前
6秒前
小胖子发布了新的文献求助10
6秒前
6秒前
思源应助虚幻镜子采纳,获得10
6秒前
6秒前
宋十一发布了新的文献求助10
6秒前
大黄发布了新的文献求助10
6秒前
合适的半青给lt的求助进行了留言
6秒前
6秒前
panda完成签到,获得积分10
6秒前
6秒前
科研通AI5应助理工采纳,获得10
7秒前
kingwill举报虚拟莫茗求助涉嫌违规
7秒前
小狗说好运来完成签到 ,获得积分10
7秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672