光催化
环丙沙星
降级(电信)
化学
环境化学
生物降解
环境友好型
微生物学
抗生素
有机化学
生物
生态学
生物化学
催化作用
电信
计算机科学
作者
Kuppusamy Sathishkumar,Saraschandra Naraginti,Kubendiran Lavanya,Fuchun Zhang,Ramamoorthy Ayyamperumal,Xinghui Liu
标识
DOI:10.1016/j.envres.2023.116558
摘要
Ciprofloxacin is one of the antibiotics predominantly used to treat bacterial infections, however excess usage, and release of antibiotic from various sources to the environment can cause severe risks to human health since it was considered as emerging pollutant. This study deals with the intimately coupled photocatalysis and biodegradation (ICPB) of ciprofloxacin using gC3N4/CdS photocatalytic semiconductor and eco-friendly renewable loofah sponge as biocarrier in the ICPB. The photocatalyst gC3N4/CdS was prepared and their synergistic photocatalytic degradation of ciprofloxacin were assessed and the results shows that gC3N4/CdS (20%) exhibit 79% degradation efficiency in 36 h. Further ICPB exhibited enhanced ciprofloxacin degradation 95% at 36 h. The 62.4% and 81.1% of chemical oxygen demand (COD) removal was obtained in the photocatalysis and ICPB respectively. Enhanced degradation of ciprofloxacin and COD removal was due to the synergetic photoelectrons generated from the gC3N4/CdS (20%) transferred to the bacterial communities which intensely mineralize the degradation products produced from the photocatalysis process. Furthermore, production of hydroxyl •OH and superoxide radical anion O2• were identified actively involved in the degradation of ciprofloxacin. The biocarrier loofah sponge provided favourable environment to the bacterial communities for the formation of biofilm and production of extracellular polymeric substances (EPS). Excess quantity of EPS production in the ICPB helps in the prevention of toxicity of photocatalyst to bacterial communities as well as facilitate the extracellular electron transfer process. This work provides a novel path for enhanced degradation of ciprofloxacin using eco-friendly, low cost and renewable biocarrier loofah sponge in the ICPB system.
科研通智能强力驱动
Strongly Powered by AbleSci AI