清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Simple-BEV: What Really Matters for Multi-Sensor BEV Perception?

简单(哲学) 计算机科学 感知 心理学 认识论 哲学 神经科学
作者
Adam W. Harley,Zhaoyuan Fang,Jie Li,Rareș Ambruș,Katerina Fragkiadaki
标识
DOI:10.1109/icra48891.2023.10160831
摘要

Building 3D perception systems for autonomous vehicles that do not rely on high-density LiDAR is a critical research problem because of the expense of LiDAR systems compared to cameras and other sensors. Recent research has developed a variety of camera-only methods, where features are differentiably "lifted" from the multi-camera images onto the 2D ground plane, yielding a "bird's eye view" (BEV) feature representation of the 3D space around the vehicle. This line of work has produced a variety of novel "lifting" methods, but we observe that other details in the training setups have shifted at the same time, making it unclear what really matters in top-performing methods. We also observe that using cameras alone is not a real-world constraint, considering that additional sensors like radar have been integrated into real vehicles for years already. In this paper, we first of all attempt to elucidate the high-impact factors in the design and training protocol of BEV perception models. We find that batch size and input resolution greatly affect performance, while lifting strategies have a more modest effect-even a simple parameter-free lifter works well. Second, we demonstrate that radar data can provide a substantial boost to performance, helping to close the gap between camera-only and LiDAR-enabled systems. We analyze the radar usage details that lead to good performance, and invite the community to re-consider this commonly-neglected part of the sensor platform.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
嘟嘟52edm完成签到 ,获得积分10
6秒前
杪夏二八完成签到 ,获得积分10
9秒前
好烦关注了科研通微信公众号
28秒前
al完成签到 ,获得积分10
30秒前
AmyHu完成签到,获得积分10
41秒前
量子星尘发布了新的文献求助10
57秒前
忘忧Aquarius完成签到,获得积分10
59秒前
胖小羊完成签到 ,获得积分10
1分钟前
1分钟前
外向的芒果完成签到 ,获得积分10
1分钟前
糯米糍发布了新的文献求助10
1分钟前
自然代亦完成签到 ,获得积分10
1分钟前
小静完成签到 ,获得积分10
1分钟前
研友_nxw2xL完成签到,获得积分10
1分钟前
muriel完成签到,获得积分10
1分钟前
SciGPT应助科研通管家采纳,获得30
1分钟前
zorro3574完成签到,获得积分10
1分钟前
1分钟前
huanghe完成签到,获得积分10
2分钟前
量子星尘发布了新的文献求助150
2分钟前
葱饼完成签到 ,获得积分10
3分钟前
李健应助甜甜的金鑫采纳,获得10
3分钟前
3分钟前
3分钟前
3分钟前
量子星尘发布了新的文献求助10
4分钟前
4分钟前
Sunny完成签到,获得积分10
4分钟前
三年三班三井寿完成签到,获得积分10
4分钟前
4分钟前
量子星尘发布了新的文献求助10
5分钟前
oleskarabach完成签到,获得积分20
5分钟前
oleskarabach发布了新的文献求助10
5分钟前
5分钟前
华仔应助科研通管家采纳,获得10
5分钟前
5分钟前
糯米糍发布了新的文献求助10
6分钟前
SYLH应助oleskarabach采纳,获得10
6分钟前
yingying完成签到,获得积分20
6分钟前
6分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3953501
求助须知:如何正确求助?哪些是违规求助? 3498943
关于积分的说明 11093390
捐赠科研通 3229545
什么是DOI,文献DOI怎么找? 1785524
邀请新用户注册赠送积分活动 869430
科研通“疑难数据库(出版商)”最低求助积分说明 801462