Simple-BEV: What Really Matters for Multi-Sensor BEV Perception?

简单(哲学) 计算机科学 感知 心理学 认识论 哲学 神经科学
作者
Adam W. Harley,Zhaoyuan Fang,Jie Li,Rareș Ambruș,Katerina Fragkiadaki
标识
DOI:10.1109/icra48891.2023.10160831
摘要

Building 3D perception systems for autonomous vehicles that do not rely on high-density LiDAR is a critical research problem because of the expense of LiDAR systems compared to cameras and other sensors. Recent research has developed a variety of camera-only methods, where features are differentiably "lifted" from the multi-camera images onto the 2D ground plane, yielding a "bird's eye view" (BEV) feature representation of the 3D space around the vehicle. This line of work has produced a variety of novel "lifting" methods, but we observe that other details in the training setups have shifted at the same time, making it unclear what really matters in top-performing methods. We also observe that using cameras alone is not a real-world constraint, considering that additional sensors like radar have been integrated into real vehicles for years already. In this paper, we first of all attempt to elucidate the high-impact factors in the design and training protocol of BEV perception models. We find that batch size and input resolution greatly affect performance, while lifting strategies have a more modest effect-even a simple parameter-free lifter works well. Second, we demonstrate that radar data can provide a substantial boost to performance, helping to close the gap between camera-only and LiDAR-enabled systems. We analyze the radar usage details that lead to good performance, and invite the community to re-consider this commonly-neglected part of the sensor platform.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zzx完成签到,获得积分10
2秒前
2秒前
樱桃完成签到,获得积分10
3秒前
大雄完成签到,获得积分10
3秒前
研友_VZG7GZ应助橙花采纳,获得10
3秒前
JamesPei应助酷炫芝麻采纳,获得10
5秒前
小于完成签到,获得积分10
5秒前
6秒前
Zhang完成签到,获得积分10
6秒前
6秒前
7秒前
科研通AI2S应助木子李采纳,获得10
7秒前
桃桃奶盖完成签到,获得积分10
7秒前
8秒前
8秒前
明亮的初阳应助呦嚯嚯嚯采纳,获得10
8秒前
weirdo发布了新的文献求助10
9秒前
9秒前
樱桃发布了新的文献求助10
11秒前
12秒前
炒栗子发布了新的文献求助10
12秒前
筱筱发布了新的文献求助10
13秒前
13秒前
14秒前
CodeCraft应助loop采纳,获得10
16秒前
17秒前
共享精神应助直率向薇采纳,获得10
18秒前
琪小7发布了新的文献求助10
18秒前
潘基文发布了新的文献求助10
18秒前
wxz1998完成签到,获得积分10
20秒前
20秒前
大壮应助大方的火龙果采纳,获得10
21秒前
小二郎应助炒栗子采纳,获得10
21秒前
22秒前
善学以致用应助杰king采纳,获得10
22秒前
樱栀发布了新的文献求助10
22秒前
CipherSage应助DLDL采纳,获得10
23秒前
琪小7完成签到,获得积分20
24秒前
26秒前
bing完成签到,获得积分20
26秒前
高分求助中
Sustainability in Tides Chemistry 2800
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Handbook of Qualitative Cross-Cultural Research Methods 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3139127
求助须知:如何正确求助?哪些是违规求助? 2790013
关于积分的说明 7793363
捐赠科研通 2446416
什么是DOI,文献DOI怎么找? 1301093
科研通“疑难数据库(出版商)”最低求助积分说明 626106
版权声明 601102