Simple-BEV: What Really Matters for Multi-Sensor BEV Perception?

简单(哲学) 计算机科学 感知 心理学 认识论 哲学 神经科学
作者
Adam W. Harley,Zhaoyuan Fang,Jie Li,Rareş Ambruş,Katerina Fragkiadaki
标识
DOI:10.1109/icra48891.2023.10160831
摘要

Building 3D perception systems for autonomous vehicles that do not rely on high-density LiDAR is a critical research problem because of the expense of LiDAR systems compared to cameras and other sensors. Recent research has developed a variety of camera-only methods, where features are differentiably "lifted" from the multi-camera images onto the 2D ground plane, yielding a "bird's eye view" (BEV) feature representation of the 3D space around the vehicle. This line of work has produced a variety of novel "lifting" methods, but we observe that other details in the training setups have shifted at the same time, making it unclear what really matters in top-performing methods. We also observe that using cameras alone is not a real-world constraint, considering that additional sensors like radar have been integrated into real vehicles for years already. In this paper, we first of all attempt to elucidate the high-impact factors in the design and training protocol of BEV perception models. We find that batch size and input resolution greatly affect performance, while lifting strategies have a more modest effect-even a simple parameter-free lifter works well. Second, we demonstrate that radar data can provide a substantial boost to performance, helping to close the gap between camera-only and LiDAR-enabled systems. We analyze the radar usage details that lead to good performance, and invite the community to re-consider this commonly-neglected part of the sensor platform.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
千跃发布了新的文献求助10
刚刚
huracan完成签到,获得积分10
1秒前
equinox发布了新的文献求助20
1秒前
BGWZSG完成签到,获得积分10
1秒前
柒柒完成签到,获得积分10
1秒前
黑囡完成签到,获得积分10
1秒前
Ava应助GZ160201184采纳,获得10
1秒前
2秒前
2秒前
靖怡关注了科研通微信公众号
2秒前
wly发布了新的文献求助10
3秒前
3秒前
3秒前
LuoJiajun发布了新的文献求助10
4秒前
Veronica Mew完成签到 ,获得积分10
4秒前
5秒前
陆漫完成签到 ,获得积分10
5秒前
6秒前
搜集达人应助whuhustwit采纳,获得10
6秒前
6秒前
zjw发布了新的文献求助10
7秒前
123发布了新的文献求助10
7秒前
执着小蚂蚁完成签到,获得积分20
8秒前
9秒前
田様应助哈哈哈哈哈哈采纳,获得10
9秒前
忍耐的龟完成签到,获得积分10
9秒前
10秒前
乔乔发布了新的文献求助10
10秒前
千跃完成签到,获得积分0
11秒前
L4c19完成签到 ,获得积分10
11秒前
含糊的春天完成签到,获得积分10
11秒前
白羊发布了新的文献求助20
11秒前
wly完成签到,获得积分20
12秒前
12秒前
12秒前
13秒前
lin666发布了新的文献求助10
13秒前
阳生完成签到,获得积分10
14秒前
14秒前
小二郎应助甜甜的建辉采纳,获得10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
Thomas Hobbes' Mechanical Conception of Nature 500
Wolbachia-mediated fitness enhancement and reproductive manipulation in the South American tomato pinworm, Tuta absoluta 400
One Health Case Studies: Practical Applications of the Transdisciplinary Approach 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5101170
求助须知:如何正确求助?哪些是违规求助? 4312502
关于积分的说明 13437438
捐赠科研通 4140154
什么是DOI,文献DOI怎么找? 2268521
邀请新用户注册赠送积分活动 1271395
关于科研通互助平台的介绍 1207687