已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Effects of heavy metal exposure on hypertension: A machine learning modeling approach

重金属 计算机科学 化学 环境化学
作者
Wenxiang Li,Guangyi Huang,Ningning Tang,Peng Lu,Li Jiang,Jian Lv,Yuanjun Qin,Yunru Lin,Fan Xu,Daizai Lei
出处
期刊:Chemosphere [Elsevier]
卷期号:337: 139435-139435 被引量:13
标识
DOI:10.1016/j.chemosphere.2023.139435
摘要

Heavy metal exposure is a common risk factor for hypertension. To develop an interpretable predictive machine learning (ML) model for hypertension based on levels of heavy metal exposure, data from the NHANES (2003-2016) were employed. Random forest (RF), support vector machine (SVM), decision tree (DT), multilayer perceptron (MLP), ridge regression (RR), AdaBoost (AB), gradient boosting decision tree (GBDT), voting classifier (VC), and K-nearest neighbour (KNN) algorithms were utilized to generate an optimal predictive model for hypertension. Three interpretable methods, the permutation feature importance analysis, partial dependence plot (PDP), and Shapley additive explanations (SHAP) methods, were integrated into a pipeline and embedded in ML for model interpretation. A total of 9005 eligible individuals were randomly allocated into two distinct sets for predictive model training and validation. The results showed that among the predictive models, the RF model demonstrated the highest performance, achieving an accuracy rate of 77.40% in the validation set. The AUC and F1 score for the model were 0.84 and 0.76, respectively. Blood Pb, urinary Cd, urinary Tl, and urinary Co levels were identified as the main influencers of hypertension, and their contribution weights were 0.0504 ± 0.0482, 0.0389 ± 0.0256, 0.0307 ± 0.0179, and 0.0296 ± 0.0162, respectively. Blood Pb (0.55-2.93 μg/dL) and urinary Cd (0.06-0.15 μg/L) levels exhibited the most pronounced upwards trend with the risk of hypertension within a specific value range, while urinary Tl (0.06-0.26 μg/L) and urinary Co (0.02-0.32 μg/L) levels demonstrated a declining trend with hypertension. The findings on the synergistic effects indicated that Pb and Cd were the primary determinants of hypertension. Our findings underscore the predictive value of heavy metals for hypertension. By utilizing interpretable methods, we discerned that Pb, Cd, Tl, and Co emerged as noteworthy contributors within the predictive model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lzy完成签到 ,获得积分10
刚刚
李爱国应助阿白采纳,获得10
刚刚
qqq发布了新的文献求助10
刚刚
Yang完成签到,获得积分10
1秒前
背后的悲完成签到,获得积分10
3秒前
3秒前
pluto应助mmyhn采纳,获得10
3秒前
4秒前
su完成签到,获得积分10
4秒前
Z2028815291完成签到,获得积分20
6秒前
张紫莹发布了新的文献求助10
6秒前
小轩子发布了新的文献求助10
8秒前
9秒前
知行完成签到 ,获得积分10
9秒前
11秒前
大模型应助独特的泥猴桃采纳,获得10
12秒前
科研通AI2S应助开放乐巧采纳,获得10
13秒前
14秒前
科研通AI2S应助科研老头采纳,获得10
15秒前
洁净的盼烟完成签到,获得积分10
19秒前
19秒前
23秒前
有魅力熊猫完成签到 ,获得积分10
24秒前
小滕发布了新的文献求助10
25秒前
南冥完成签到 ,获得积分10
26秒前
28秒前
30秒前
31秒前
领导范儿应助风趣的黑夜采纳,获得10
33秒前
阿琳完成签到,获得积分20
33秒前
酷波er应助liugm采纳,获得10
33秒前
小太阳完成签到,获得积分10
33秒前
33秒前
从容芮应助mmyhn采纳,获得10
33秒前
34秒前
万能图书馆应助跳跃碧灵采纳,获得10
34秒前
科研通AI2S应助今我来思采纳,获得10
36秒前
阿琳发布了新的文献求助10
37秒前
柠檬精翠翠完成签到 ,获得积分10
37秒前
无限太阳发布了新的文献求助10
38秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3136861
求助须知:如何正确求助?哪些是违规求助? 2787848
关于积分的说明 7783420
捐赠科研通 2443925
什么是DOI,文献DOI怎么找? 1299485
科研通“疑难数据库(出版商)”最低求助积分说明 625461
版权声明 600954