Effects of heavy metal exposure on hypertension: A machine learning modeling approach

随机森林 多层感知器 决策树 阿达布思 支持向量机 泌尿系统 人工智能 Boosting(机器学习) 机器学习 数学 计算机科学 统计 医学 内科学 人工神经网络
作者
Wenxiang Li,Guangyi Huang,Ningning Tang,Peng Lu,Li Jiang,Jian Lv,Yuanjun Qin,Yunru Lin,Fan Xu,Daizai Lei
出处
期刊:Chemosphere [Elsevier]
卷期号:337: 139435-139435 被引量:19
标识
DOI:10.1016/j.chemosphere.2023.139435
摘要

Heavy metal exposure is a common risk factor for hypertension. To develop an interpretable predictive machine learning (ML) model for hypertension based on levels of heavy metal exposure, data from the NHANES (2003-2016) were employed. Random forest (RF), support vector machine (SVM), decision tree (DT), multilayer perceptron (MLP), ridge regression (RR), AdaBoost (AB), gradient boosting decision tree (GBDT), voting classifier (VC), and K-nearest neighbour (KNN) algorithms were utilized to generate an optimal predictive model for hypertension. Three interpretable methods, the permutation feature importance analysis, partial dependence plot (PDP), and Shapley additive explanations (SHAP) methods, were integrated into a pipeline and embedded in ML for model interpretation. A total of 9005 eligible individuals were randomly allocated into two distinct sets for predictive model training and validation. The results showed that among the predictive models, the RF model demonstrated the highest performance, achieving an accuracy rate of 77.40% in the validation set. The AUC and F1 score for the model were 0.84 and 0.76, respectively. Blood Pb, urinary Cd, urinary Tl, and urinary Co levels were identified as the main influencers of hypertension, and their contribution weights were 0.0504 ± 0.0482, 0.0389 ± 0.0256, 0.0307 ± 0.0179, and 0.0296 ± 0.0162, respectively. Blood Pb (0.55-2.93 μg/dL) and urinary Cd (0.06-0.15 μg/L) levels exhibited the most pronounced upwards trend with the risk of hypertension within a specific value range, while urinary Tl (0.06-0.26 μg/L) and urinary Co (0.02-0.32 μg/L) levels demonstrated a declining trend with hypertension. The findings on the synergistic effects indicated that Pb and Cd were the primary determinants of hypertension. Our findings underscore the predictive value of heavy metals for hypertension. By utilizing interpretable methods, we discerned that Pb, Cd, Tl, and Co emerged as noteworthy contributors within the predictive model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
香蕉觅云应助DXXX采纳,获得10
刚刚
刚刚
海鸥海鸥发布了新的文献求助30
刚刚
刚刚
深情安青应助系统提示采纳,获得10
刚刚
传奇3应助阿宝采纳,获得10
1秒前
韭黄发布了新的文献求助10
1秒前
2秒前
桐桐应助玲珑油豆腐采纳,获得10
2秒前
charih完成签到 ,获得积分10
2秒前
hxy808关注了科研通微信公众号
3秒前
佚小满完成签到,获得积分10
3秒前
c123完成签到 ,获得积分10
4秒前
4秒前
berry发布了新的文献求助10
4秒前
超11发布了新的文献求助10
4秒前
5秒前
5秒前
隐形曼青应助烩面大师采纳,获得10
5秒前
5秒前
默然的歌完成签到 ,获得积分10
5秒前
CTL发布了新的文献求助10
6秒前
6秒前
6秒前
大鹏完成签到,获得积分10
6秒前
6秒前
6秒前
congguitar发布了新的文献求助10
7秒前
CodeCraft应助韭黄采纳,获得10
7秒前
7秒前
小月发布了新的文献求助10
7秒前
香蕉觅云应助学渣向下采纳,获得10
8秒前
8秒前
YML完成签到,获得积分10
9秒前
荣安安完成签到,获得积分10
9秒前
啦某某完成签到,获得积分10
9秒前
sunzhiyu233发布了新的文献求助10
10秒前
zhenzhen发布了新的文献求助10
10秒前
fang发布了新的文献求助10
10秒前
chengyulin完成签到 ,获得积分10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759