Phosphorus removal has been explored for a long time, however sustainable phosphorus adsorption and recovery with adsorbents recycling is rarely reported. This work proposes a sustainable phosphorus recycling route with calcium-modified powdered activated carbon with chitosan (Ca-PAC-CTS). The morphology, functional groups and crystal structure of Ca-PAC-CTS were characterized. The maximum phosphorus adsorption capacity was 16.73 mg/g Ca-PAC-CTS with Langmuir model at 298 K. Stable phosphorus sorption on Ca-PAC-CTS could be observed at the large range of pH (4- 10) when coexisting with NO3-, SO42-, Cl- and F-, except HCO3-. 98.95 % The recovery of adsorbed phosphorus could get to 98.95 % using 0.05 M sulfuric acid solution, and the phosphate adsorption efficiency through Ca-PAC-CTS remained to be more than 80 % after five adsorption-desorption cycles, suggesting that Ca-PAC-CTS was one of the promising adsorbents for sustainable removal and recovery of phosphorus in aqueous solution.