亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

GL-Net: Semantic segmentation for point clouds of shield tunnel via global feature learning and local feature discriminative aggregation

判别式 特征(语言学) 点云 分割 护盾 人工智能 计算机科学 特征学习 块(置换群论) 地质学 数学 几何学 岩石学 语言学 哲学
作者
Jincheng Li,Zhenxin Zhang,Haili Sun,Si Xie,Jianjun Zou,Changqi Ji,Yue Lu,Xiaoxu Ren,Wang Liu-zhao
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:199: 335-349 被引量:7
标识
DOI:10.1016/j.isprsjprs.2023.04.011
摘要

has gradually become the first choice of modern urban public transportation due to its advantages of safety and high-efficiency. Shield tunnel is an important type of subway tunnel, and its structural stability and safety play an important role in subway operation. The shield tunnels are prone to problems such as water leakage and tunnel collapse, which affect the safe operation of subways. Efficient monitoring methods are required to detect the status of subway tunnels. The data collection and accurate segmentation of key components of shield tunnels are the basis and key to the automatic monitoring of subway tunnels. This research presents a novel semantic segmentation method of three-dimensional (3-D) point clouds of typical structural elements (e.g., longitudinal joint, circumferential joints, bolt hole and grouting hole) in shield tunnel based on deep learning. In this method, we focus on how to make the network learn robust global features and complex local distribution patterns. Further, we propose a global and local feature encoding block (namely GL-block) to discriminatively aggregate local features while learning global representation. After multiple encodings by the GL-block, we design a global correlation modeling (GCM) module to establish a global awareness of each point. Finally, a weighted cross-entropy loss function is designed to solve the problem of unbalanced number of samples in each category of shield tunnel. In the experiments, we make a dataset of shield tunnel point clouds with a length of about 1,000 m collected by CNU-TS-1 (DU et al., 2018) mobile tunnel monitoring system, and use the dataset to train and test the segmentation ability of our method on the typical structural elements of shield tunnels. Experiments verify the effectiveness of our method by comparing with the other state-of-the-art 3-D point cloud semantic segmentation methods, and our method has an mIoU score of 73.02 %, which is at least 14.54 % higher than the other compared state-of-the-art networks. Also, we further verify the adaptability of our method to different tunnels and different laser scanning equipment, such as FARO, Leica and Z + F, and achieve very advanced performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
24秒前
PD完成签到,获得积分10
39秒前
51秒前
1分钟前
义气的书雁完成签到,获得积分10
1分钟前
2分钟前
andrele发布了新的文献求助10
2分钟前
谦也静熵完成签到,获得积分10
3分钟前
通科研完成签到 ,获得积分10
3分钟前
5分钟前
andrele发布了新的文献求助10
5分钟前
陈媛发布了新的文献求助10
6分钟前
sasa发布了新的文献求助10
6分钟前
sasa完成签到,获得积分10
6分钟前
满地枫叶完成签到,获得积分20
7分钟前
joanna完成签到,获得积分10
7分钟前
满地枫叶发布了新的文献求助10
7分钟前
7分钟前
M先生完成签到,获得积分10
7分钟前
7分钟前
8分钟前
tlx发布了新的文献求助10
8分钟前
8分钟前
8分钟前
8分钟前
9分钟前
9分钟前
小圆圈发布了新的文献求助30
9分钟前
兴奋的宛亦完成签到,获得积分20
9分钟前
zhanglongfei发布了新的文献求助10
9分钟前
9分钟前
小圆圈发布了新的文献求助10
9分钟前
10分钟前
小圆圈发布了新的文献求助10
10分钟前
李健的小迷弟应助小圆圈采纳,获得10
10分钟前
10分钟前
冬瓜排骨养生汤完成签到,获得积分10
10分钟前
11分钟前
小圆圈发布了新的文献求助10
11分钟前
vantie完成签到 ,获得积分10
11分钟前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3150609
求助须知:如何正确求助?哪些是违规求助? 2802008
关于积分的说明 7846050
捐赠科研通 2459372
什么是DOI,文献DOI怎么找? 1309219
科研通“疑难数据库(出版商)”最低求助积分说明 628696
版权声明 601757