GL-Net: Semantic segmentation for point clouds of shield tunnel via global feature learning and local feature discriminative aggregation

判别式 特征(语言学) 点云 分割 护盾 人工智能 计算机科学 特征学习 块(置换群论) 地质学 数学 几何学 岩石学 语言学 哲学
作者
Jincheng Li,Zhenxin Zhang,Haili Sun,Si Xie,Jianjun Zou,Changqi Ji,Yue Lu,Xiaoxu Ren,Wang Liu-zhao
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:199: 335-349 被引量:19
标识
DOI:10.1016/j.isprsjprs.2023.04.011
摘要

has gradually become the first choice of modern urban public transportation due to its advantages of safety and high-efficiency. Shield tunnel is an important type of subway tunnel, and its structural stability and safety play an important role in subway operation. The shield tunnels are prone to problems such as water leakage and tunnel collapse, which affect the safe operation of subways. Efficient monitoring methods are required to detect the status of subway tunnels. The data collection and accurate segmentation of key components of shield tunnels are the basis and key to the automatic monitoring of subway tunnels. This research presents a novel semantic segmentation method of three-dimensional (3-D) point clouds of typical structural elements (e.g., longitudinal joint, circumferential joints, bolt hole and grouting hole) in shield tunnel based on deep learning. In this method, we focus on how to make the network learn robust global features and complex local distribution patterns. Further, we propose a global and local feature encoding block (namely GL-block) to discriminatively aggregate local features while learning global representation. After multiple encodings by the GL-block, we design a global correlation modeling (GCM) module to establish a global awareness of each point. Finally, a weighted cross-entropy loss function is designed to solve the problem of unbalanced number of samples in each category of shield tunnel. In the experiments, we make a dataset of shield tunnel point clouds with a length of about 1,000 m collected by CNU-TS-1 (DU et al., 2018) mobile tunnel monitoring system, and use the dataset to train and test the segmentation ability of our method on the typical structural elements of shield tunnels. Experiments verify the effectiveness of our method by comparing with the other state-of-the-art 3-D point cloud semantic segmentation methods, and our method has an mIoU score of 73.02 %, which is at least 14.54 % higher than the other compared state-of-the-art networks. Also, we further verify the adaptability of our method to different tunnels and different laser scanning equipment, such as FARO, Leica and Z + F, and achieve very advanced performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
科研通AI2S应助拾新采纳,获得10
1秒前
1秒前
kimon完成签到,获得积分10
2秒前
yenist完成签到,获得积分10
2秒前
3秒前
5秒前
5秒前
5秒前
刚刚发布了新的文献求助10
5秒前
云月林生完成签到,获得积分10
6秒前
7秒前
佐zzz完成签到 ,获得积分10
7秒前
跳跃凡桃发布了新的文献求助10
7秒前
今后应助Kianna采纳,获得30
8秒前
wanci应助刘家小姐姐采纳,获得10
8秒前
12发布了新的文献求助10
9秒前
HHH发布了新的文献求助10
9秒前
糕糕发布了新的文献求助10
13秒前
zjq完成签到,获得积分10
13秒前
14秒前
尊敬熊发布了新的文献求助10
15秒前
15秒前
量子星尘发布了新的文献求助10
16秒前
Hey驳回了赘婿应助
16秒前
17秒前
ding应助刚刚采纳,获得10
17秒前
17秒前
领导范儿应助zxc采纳,获得30
18秒前
18秒前
逆风起笔完成签到,获得积分10
20秒前
IvyLee发布了新的文献求助10
20秒前
汉堡包应助聪慧的正豪采纳,获得30
20秒前
21秒前
21秒前
RaynorHank发布了新的文献求助10
21秒前
今后应助奶油布丁采纳,获得10
22秒前
22秒前
大反应釜发布了新的文献求助10
23秒前
逆风起笔发布了新的文献求助10
23秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956215
求助须知:如何正确求助?哪些是违规求助? 3502433
关于积分的说明 11107557
捐赠科研通 3233009
什么是DOI,文献DOI怎么找? 1787120
邀请新用户注册赠送积分活动 870498
科研通“疑难数据库(出版商)”最低求助积分说明 802032