Real-time phase imaging with physics-enhanced network and equivariance

计算机科学 稳健性(进化) 相位恢复 正规化(语言学) 人工智能 反问题 算法 模式识别(心理学) 傅里叶变换 数学 生物化学 基因 数学分析 化学
作者
Yuheng Wang,Huiyang Wang,Chengxin Zhou,Xianxin Han,Shengde Liu,Xiaoxu Lü,Jianglei Di,Liyun Zhong
出处
期刊:Optics Letters [Optica Publishing Group]
卷期号:48 (10): 2732-2732 被引量:5
标识
DOI:10.1364/ol.487150
摘要

Learning-based phase imaging balances high fidelity and speed. However, supervised training requires unmistakable and large-scale datasets, which are often hard or impossible to obtain. Here, we propose an architecture for real-time phase imaging based on physics-enhanced network and equivariance (PEPI). The measurement consistency and equivariant consistency of physical diffraction images are used to optimize the network parameters and invert the process from a single diffraction pattern. In addition, we propose a regularization method based total variation kernel (TV-K) function constraint to output more texture details and high-frequency information. The results show that PEPI can produce the object phase quickly and accurately, and the proposed learning strategy performs closely to the fully supervised method in the evaluation function. Moreover, the PEPI solution can handle high-frequency details better than the fully supervised method. The reconstruction results validate the robustness and generalization ability of the proposed method. Specially, our results show that PEPI leads to considerable performance improvement on the imaging inverse problem, thereby paving the way for high-precision unsupervised phase imaging.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
动听安筠完成签到 ,获得积分10
刚刚
2秒前
2秒前
崔崔完成签到 ,获得积分10
2秒前
科研通AI2S应助科研通管家采纳,获得10
3秒前
上官若男应助科研通管家采纳,获得10
3秒前
3秒前
wu8577应助科研通管家采纳,获得10
4秒前
领导范儿应助科研通管家采纳,获得10
4秒前
wu8577应助科研通管家采纳,获得10
4秒前
Owen应助科研通管家采纳,获得10
4秒前
大模型应助科研通管家采纳,获得10
4秒前
Lucas应助科研通管家采纳,获得10
4秒前
JamesPei应助科研通管家采纳,获得10
4秒前
充电宝应助科研通管家采纳,获得10
4秒前
5秒前
mSnBmaterial发布了新的文献求助10
5秒前
6秒前
直率心锁完成签到,获得积分10
7秒前
丘比特应助rpe采纳,获得10
9秒前
风不鸣枝发布了新的文献求助10
9秒前
玊尔发布了新的文献求助10
10秒前
涛tao完成签到,获得积分10
11秒前
12秒前
13秒前
一二三四发布了新的文献求助10
14秒前
14秒前
乐乐应助麻雀采纳,获得30
15秒前
LYi完成签到,获得积分10
15秒前
16秒前
17秒前
木子完成签到 ,获得积分10
19秒前
面包发布了新的文献求助10
20秒前
21秒前
等等发布了新的文献求助10
22秒前
狂奔的蜗牛完成签到,获得积分10
22秒前
爆米花应助等等采纳,获得10
27秒前
小马甲应助mSnBmaterial采纳,获得10
28秒前
LaTeXer应助耿大海采纳,获得100
29秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3962406
求助须知:如何正确求助?哪些是违规求助? 3508487
关于积分的说明 11141198
捐赠科研通 3241162
什么是DOI,文献DOI怎么找? 1791358
邀请新用户注册赠送积分活动 872842
科研通“疑难数据库(出版商)”最低求助积分说明 803396