Non-Equilibrium Modeling of Concentration-Driven processes with Constant Chemical Potential Molecular Dynamics Simulations

非平衡态热力学 背景(考古学) 分子动力学 结晶 常量(计算机编程) 化学物理 化学 统计物理学 热力学 平衡常数 化学平衡 生化工程 生物系统 物理 计算机科学 计算化学 物理化学 古生物学 程序设计语言 工程类 生物
作者
Tarak Karmakar,Aaron R. Finney,Matteo Salvalaglio,A. Özgür Yazaydın,Claudio Perego
出处
期刊:Accounts of Chemical Research [American Chemical Society]
卷期号:56 (10): 1156-1167 被引量:2
标识
DOI:10.1021/acs.accounts.2c00811
摘要

ConspectusConcentration-driven processes in solution, i.e., phenomena that are sustained by persistent concentration gradients, such as crystallization and surface adsorption, are fundamental chemical processes. Understanding such phenomena is crucial for countless applications, from pharmaceuticals to biotechnology. Molecular dynamics (MD), both in- and out-of-equilibrium, plays an essential role in the current understanding of concentration-driven processes. Computational costs, however, impose drastic limitations on the accessible scale of simulated systems, hampering the effective study of such phenomena. In particular, due to these size limitations, closed system MD of concentration-driven processes is affected by solution depletion/enrichment that unavoidably impacts the dynamics of the chemical phenomena under study. As a notable example, in simulations of crystallization from solution, the transfer of monomers between the liquid and crystal phases results in a gradual depletion/enrichment of solution concentration, altering the driving force for phase transition. In contrast, this effect is negligible in experiments, given the macroscopic size of the solution volume. Because of these limitations, accurate MD characterization of concentration-driven phenomena has proven to be a long-standing simulation challenge. While disparate equilibrium and nonequilibrium simulation strategies have been proposed to address the study of such processes, the methodologies are in continuous development.In this context, a novel simulation technique named constant chemical potential molecular dynamics (CμMD) was recently proposed. CμMD employs properly designed, concentration-dependent external forces that regulate the flux of solute species between selected subregions of the simulation volume. This enables simulations of systems under a constant chemical drive in an efficient and straightforward way. The CμMD scheme was originally applied to the case of crystal growth from solution and then extended to the simulation of various physicochemical processes, resulting in new variants of the method. This Account illustrates the CμMD method and the key advances enabled by it in the framework of in silico chemistry. We review results obtained in crystallization studies, where CμMD allows growth rate calculations and equilibrium shape predictions, and in adsorption studies, where adsorption thermodynamics on porous or solid surfaces was correctly characterized via CμMD. Furthermore, we will discuss the application of CμMD variants to simulate permeation through porous materials, solution separation, and nucleation upon fixed concentration gradients. While presenting the numerous applications of the method, we provide an original and comprehensive assessment of concentration-driven simulations using CμMD. To this end, we also shed light on the theoretical and technical foundations of CμMD, underlining the novelty and specificity of the method with respect to existing techniques while stressing its current limitations. Overall, the application of CμMD to a diverse range of fields provides new insight into many physicochemical processes, the in silico study of which has been hitherto limited by finite-size effects. In this context, CμMD stands out as a general-purpose method that promises to be an invaluable simulation tool for studying molecular-scale concentration-driven phenomena.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
George完成签到 ,获得积分10
1秒前
风起枫落发布了新的文献求助10
2秒前
3秒前
tt发布了新的文献求助10
3秒前
啪唧完成签到,获得积分10
4秒前
5秒前
6秒前
啪唧发布了新的文献求助10
6秒前
朴实的青文完成签到,获得积分10
6秒前
7秒前
羊白玉完成签到 ,获得积分10
7秒前
喵喵完成签到,获得积分10
9秒前
9秒前
故意的安露完成签到,获得积分10
10秒前
gms发布了新的文献求助10
10秒前
Eillen完成签到,获得积分10
11秒前
Trankhaiuy发布了新的文献求助10
12秒前
13秒前
14秒前
zx完成签到,获得积分10
14秒前
smilly完成签到 ,获得积分10
15秒前
17秒前
17秒前
17秒前
18秒前
窦窦完成签到,获得积分10
19秒前
tomorrow505应助阿白采纳,获得10
19秒前
江湖白晓灵应助creep采纳,获得20
19秒前
华仔应助gms采纳,获得10
19秒前
顺心孤云发布了新的文献求助10
19秒前
lby关闭了lby文献求助
21秒前
深情代玉发布了新的文献求助10
21秒前
科研通AI2S应助hyw采纳,获得10
21秒前
敏er好学发布了新的文献求助10
22秒前
我爱螺蛳粉完成签到 ,获得积分10
22秒前
mc关注了科研通微信公众号
22秒前
Cathy发布了新的文献求助10
22秒前
Trankhaiuy完成签到,获得积分10
23秒前
酷波er应助靓丽的采白采纳,获得10
23秒前
高分求助中
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
Spatial Political Economy: Uneven Development and the Production of Nature in Chile 400
Research on managing groups and teams 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3330222
求助须知:如何正确求助?哪些是违规求助? 2959796
关于积分的说明 8597036
捐赠科研通 2638227
什么是DOI,文献DOI怎么找? 1444215
科研通“疑难数据库(出版商)”最低求助积分说明 669074
邀请新用户注册赠送积分活动 656613