亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Non-Equilibrium Modeling of Concentration-Driven processes with Constant Chemical Potential Molecular Dynamics Simulations

非平衡态热力学 背景(考古学) 分子动力学 结晶 常量(计算机编程) 化学物理 化学 统计物理学 热力学 平衡常数 化学平衡 生化工程 生物系统 物理 计算机科学 计算化学 物理化学 生物 程序设计语言 古生物学 工程类
作者
Tarak Karmakar,Aaron R. Finney,Matteo Salvalaglio,A. Özgür Yazaydın,Claudio Perego
出处
期刊:Accounts of Chemical Research [American Chemical Society]
卷期号:56 (10): 1156-1167 被引量:2
标识
DOI:10.1021/acs.accounts.2c00811
摘要

ConspectusConcentration-driven processes in solution, i.e., phenomena that are sustained by persistent concentration gradients, such as crystallization and surface adsorption, are fundamental chemical processes. Understanding such phenomena is crucial for countless applications, from pharmaceuticals to biotechnology. Molecular dynamics (MD), both in- and out-of-equilibrium, plays an essential role in the current understanding of concentration-driven processes. Computational costs, however, impose drastic limitations on the accessible scale of simulated systems, hampering the effective study of such phenomena. In particular, due to these size limitations, closed system MD of concentration-driven processes is affected by solution depletion/enrichment that unavoidably impacts the dynamics of the chemical phenomena under study. As a notable example, in simulations of crystallization from solution, the transfer of monomers between the liquid and crystal phases results in a gradual depletion/enrichment of solution concentration, altering the driving force for phase transition. In contrast, this effect is negligible in experiments, given the macroscopic size of the solution volume. Because of these limitations, accurate MD characterization of concentration-driven phenomena has proven to be a long-standing simulation challenge. While disparate equilibrium and nonequilibrium simulation strategies have been proposed to address the study of such processes, the methodologies are in continuous development.In this context, a novel simulation technique named constant chemical potential molecular dynamics (CμMD) was recently proposed. CμMD employs properly designed, concentration-dependent external forces that regulate the flux of solute species between selected subregions of the simulation volume. This enables simulations of systems under a constant chemical drive in an efficient and straightforward way. The CμMD scheme was originally applied to the case of crystal growth from solution and then extended to the simulation of various physicochemical processes, resulting in new variants of the method. This Account illustrates the CμMD method and the key advances enabled by it in the framework of in silico chemistry. We review results obtained in crystallization studies, where CμMD allows growth rate calculations and equilibrium shape predictions, and in adsorption studies, where adsorption thermodynamics on porous or solid surfaces was correctly characterized via CμMD. Furthermore, we will discuss the application of CμMD variants to simulate permeation through porous materials, solution separation, and nucleation upon fixed concentration gradients. While presenting the numerous applications of the method, we provide an original and comprehensive assessment of concentration-driven simulations using CμMD. To this end, we also shed light on the theoretical and technical foundations of CμMD, underlining the novelty and specificity of the method with respect to existing techniques while stressing its current limitations. Overall, the application of CμMD to a diverse range of fields provides new insight into many physicochemical processes, the in silico study of which has been hitherto limited by finite-size effects. In this context, CμMD stands out as a general-purpose method that promises to be an invaluable simulation tool for studying molecular-scale concentration-driven phenomena.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
5秒前
天天快乐应助甜青提采纳,获得10
6秒前
llj发布了新的文献求助10
12秒前
13秒前
18秒前
21秒前
ding应助科研通管家采纳,获得10
25秒前
MchemG应助科研通管家采纳,获得10
25秒前
科研通AI2S应助科研通管家采纳,获得10
25秒前
甜青提发布了新的文献求助10
25秒前
zhangxiaoqing完成签到,获得积分10
27秒前
G.D完成签到 ,获得积分10
39秒前
kuoping完成签到,获得积分0
46秒前
49秒前
情怀应助学术小垃圾采纳,获得30
55秒前
1分钟前
1分钟前
哲别发布了新的文献求助10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
1分钟前
2分钟前
2分钟前
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
burstsolo完成签到,获得积分10
2分钟前
burstsolo发布了新的文献求助10
2分钟前
guan完成签到,获得积分10
2分钟前
学术小垃圾完成签到,获得积分10
2分钟前
3分钟前
研友_VZG7GZ应助甜青提采纳,获得10
3分钟前
3分钟前
3分钟前
甜青提发布了新的文献求助10
3分钟前
3分钟前
迷人宛亦发布了新的文献求助10
3分钟前
Hello应助迷人宛亦采纳,获得10
3分钟前
3分钟前
轻松听双发布了新的文献求助10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Handbook of Migration, International Relations and Security in Asia 555
Between high and low : a chronology of the early Hellenistic period 500
Exosomes Pipeline Insight, 2025 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5671189
求助须知:如何正确求助?哪些是违规求助? 4911770
关于积分的说明 15134204
捐赠科研通 4829956
什么是DOI,文献DOI怎么找? 2586558
邀请新用户注册赠送积分活动 1540222
关于科研通互助平台的介绍 1498407