Non-Equilibrium Modeling of Concentration-Driven processes with Constant Chemical Potential Molecular Dynamics Simulations

非平衡态热力学 背景(考古学) 分子动力学 结晶 常量(计算机编程) 化学物理 化学 统计物理学 热力学 平衡常数 化学平衡 生化工程 生物系统 物理 计算机科学 计算化学 物理化学 古生物学 程序设计语言 工程类 生物
作者
Tarak Karmakar,Aaron R. Finney,Matteo Salvalaglio,A. Özgür Yazaydın,Claudio Perego
出处
期刊:Accounts of Chemical Research [American Chemical Society]
卷期号:56 (10): 1156-1167 被引量:2
标识
DOI:10.1021/acs.accounts.2c00811
摘要

ConspectusConcentration-driven processes in solution, i.e., phenomena that are sustained by persistent concentration gradients, such as crystallization and surface adsorption, are fundamental chemical processes. Understanding such phenomena is crucial for countless applications, from pharmaceuticals to biotechnology. Molecular dynamics (MD), both in- and out-of-equilibrium, plays an essential role in the current understanding of concentration-driven processes. Computational costs, however, impose drastic limitations on the accessible scale of simulated systems, hampering the effective study of such phenomena. In particular, due to these size limitations, closed system MD of concentration-driven processes is affected by solution depletion/enrichment that unavoidably impacts the dynamics of the chemical phenomena under study. As a notable example, in simulations of crystallization from solution, the transfer of monomers between the liquid and crystal phases results in a gradual depletion/enrichment of solution concentration, altering the driving force for phase transition. In contrast, this effect is negligible in experiments, given the macroscopic size of the solution volume. Because of these limitations, accurate MD characterization of concentration-driven phenomena has proven to be a long-standing simulation challenge. While disparate equilibrium and nonequilibrium simulation strategies have been proposed to address the study of such processes, the methodologies are in continuous development.In this context, a novel simulation technique named constant chemical potential molecular dynamics (CμMD) was recently proposed. CμMD employs properly designed, concentration-dependent external forces that regulate the flux of solute species between selected subregions of the simulation volume. This enables simulations of systems under a constant chemical drive in an efficient and straightforward way. The CμMD scheme was originally applied to the case of crystal growth from solution and then extended to the simulation of various physicochemical processes, resulting in new variants of the method. This Account illustrates the CμMD method and the key advances enabled by it in the framework of in silico chemistry. We review results obtained in crystallization studies, where CμMD allows growth rate calculations and equilibrium shape predictions, and in adsorption studies, where adsorption thermodynamics on porous or solid surfaces was correctly characterized via CμMD. Furthermore, we will discuss the application of CμMD variants to simulate permeation through porous materials, solution separation, and nucleation upon fixed concentration gradients. While presenting the numerous applications of the method, we provide an original and comprehensive assessment of concentration-driven simulations using CμMD. To this end, we also shed light on the theoretical and technical foundations of CμMD, underlining the novelty and specificity of the method with respect to existing techniques while stressing its current limitations. Overall, the application of CμMD to a diverse range of fields provides new insight into many physicochemical processes, the in silico study of which has been hitherto limited by finite-size effects. In this context, CμMD stands out as a general-purpose method that promises to be an invaluable simulation tool for studying molecular-scale concentration-driven phenomena.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
双子土豆泥完成签到 ,获得积分10
4秒前
4秒前
6秒前
汤姆完成签到,获得积分10
8秒前
EnnoEven完成签到 ,获得积分10
9秒前
霍小美完成签到,获得积分10
10秒前
rxdeng发布了新的文献求助10
12秒前
12秒前
慕青应助louxiaohan采纳,获得10
13秒前
量子星尘发布了新的文献求助10
14秒前
15秒前
不动僧发布了新的文献求助30
16秒前
juliar完成签到 ,获得积分10
17秒前
Ava应助单忘幽采纳,获得10
17秒前
18秒前
xxx发布了新的文献求助10
21秒前
22秒前
23秒前
lijiauyi1994发布了新的文献求助10
24秒前
24秒前
蒲公英的半海完成签到,获得积分10
25秒前
25秒前
26秒前
青菜发布了新的文献求助10
27秒前
代代完成签到,获得积分10
27秒前
louxiaohan发布了新的文献求助10
28秒前
29秒前
30秒前
lala发布了新的文献求助20
32秒前
32秒前
凉凉应助代代采纳,获得10
33秒前
智圆行方完成签到,获得积分10
36秒前
田様应助宁士萧采纳,获得10
36秒前
爱吃香菜完成签到,获得积分10
37秒前
lijiauyi1994完成签到,获得积分10
37秒前
38秒前
明眸完成签到,获得积分10
40秒前
43秒前
43秒前
lsy发布了新的文献求助10
43秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4010512
求助须知:如何正确求助?哪些是违规求助? 3550312
关于积分的说明 11305427
捐赠科研通 3284689
什么是DOI,文献DOI怎么找? 1810836
邀请新用户注册赠送积分活动 886556
科研通“疑难数据库(出版商)”最低求助积分说明 811499