亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Non-Equilibrium Modeling of Concentration-Driven processes with Constant Chemical Potential Molecular Dynamics Simulations

非平衡态热力学 背景(考古学) 分子动力学 结晶 常量(计算机编程) 化学物理 化学 统计物理学 热力学 平衡常数 化学平衡 生化工程 生物系统 物理 计算机科学 计算化学 物理化学 生物 程序设计语言 古生物学 工程类
作者
Tarak Karmakar,Aaron R. Finney,Matteo Salvalaglio,A. Özgür Yazaydın,Claudio Perego
出处
期刊:Accounts of Chemical Research [American Chemical Society]
卷期号:56 (10): 1156-1167 被引量:2
标识
DOI:10.1021/acs.accounts.2c00811
摘要

ConspectusConcentration-driven processes in solution, i.e., phenomena that are sustained by persistent concentration gradients, such as crystallization and surface adsorption, are fundamental chemical processes. Understanding such phenomena is crucial for countless applications, from pharmaceuticals to biotechnology. Molecular dynamics (MD), both in- and out-of-equilibrium, plays an essential role in the current understanding of concentration-driven processes. Computational costs, however, impose drastic limitations on the accessible scale of simulated systems, hampering the effective study of such phenomena. In particular, due to these size limitations, closed system MD of concentration-driven processes is affected by solution depletion/enrichment that unavoidably impacts the dynamics of the chemical phenomena under study. As a notable example, in simulations of crystallization from solution, the transfer of monomers between the liquid and crystal phases results in a gradual depletion/enrichment of solution concentration, altering the driving force for phase transition. In contrast, this effect is negligible in experiments, given the macroscopic size of the solution volume. Because of these limitations, accurate MD characterization of concentration-driven phenomena has proven to be a long-standing simulation challenge. While disparate equilibrium and nonequilibrium simulation strategies have been proposed to address the study of such processes, the methodologies are in continuous development.In this context, a novel simulation technique named constant chemical potential molecular dynamics (CμMD) was recently proposed. CμMD employs properly designed, concentration-dependent external forces that regulate the flux of solute species between selected subregions of the simulation volume. This enables simulations of systems under a constant chemical drive in an efficient and straightforward way. The CμMD scheme was originally applied to the case of crystal growth from solution and then extended to the simulation of various physicochemical processes, resulting in new variants of the method. This Account illustrates the CμMD method and the key advances enabled by it in the framework of in silico chemistry. We review results obtained in crystallization studies, where CμMD allows growth rate calculations and equilibrium shape predictions, and in adsorption studies, where adsorption thermodynamics on porous or solid surfaces was correctly characterized via CμMD. Furthermore, we will discuss the application of CμMD variants to simulate permeation through porous materials, solution separation, and nucleation upon fixed concentration gradients. While presenting the numerous applications of the method, we provide an original and comprehensive assessment of concentration-driven simulations using CμMD. To this end, we also shed light on the theoretical and technical foundations of CμMD, underlining the novelty and specificity of the method with respect to existing techniques while stressing its current limitations. Overall, the application of CμMD to a diverse range of fields provides new insight into many physicochemical processes, the in silico study of which has been hitherto limited by finite-size effects. In this context, CμMD stands out as a general-purpose method that promises to be an invaluable simulation tool for studying molecular-scale concentration-driven phenomena.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大胆的音响完成签到 ,获得积分10
6秒前
Lan完成签到 ,获得积分10
15秒前
搞怪柔完成签到,获得积分10
17秒前
量子星尘发布了新的文献求助30
18秒前
38秒前
1分钟前
handsome发布了新的文献求助10
1分钟前
1分钟前
1分钟前
yg发布了新的文献求助10
1分钟前
1分钟前
1分钟前
1分钟前
阿藏完成签到,获得积分10
2分钟前
happyrrc完成签到,获得积分10
2分钟前
2分钟前
佚名123完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
3分钟前
3分钟前
可乐发布了新的文献求助10
4分钟前
4分钟前
4分钟前
Herman发布了新的文献求助10
4分钟前
量子星尘发布了新的文献求助10
4分钟前
上官若男应助Herman采纳,获得10
4分钟前
5分钟前
5分钟前
5分钟前
boom完成签到 ,获得积分10
5分钟前
SSY发布了新的文献求助10
5分钟前
可乐发布了新的文献求助10
5分钟前
迷路师发布了新的文献求助10
6分钟前
6分钟前
liuliu发布了新的文献求助10
6分钟前
化学完成签到 ,获得积分10
7分钟前
7分钟前
yg发布了新的文献求助10
7分钟前
7分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5723876
求助须知:如何正确求助?哪些是违规求助? 5282103
关于积分的说明 15299312
捐赠科研通 4872127
什么是DOI,文献DOI怎么找? 2616578
邀请新用户注册赠送积分活动 1566455
关于科研通互助平台的介绍 1523290