计算机科学
推荐系统
强化学习
图形
万维网
互联网
服务(商务)
知识图
情报检索
人工智能
理论计算机科学
经济
经济
作者
Jibing Gong,Yao Wan,Ye Liu,Xuewen Li,Yi Zhao,Cheng Wang,Laurent Charlin,Xiaohan Fang,Wenzheng Feng,Jingyi Zhang,Jie Tang
出处
期刊:ACM Transactions on The Web
[Association for Computing Machinery]
日期:2023-03-01
卷期号:17 (3): 1-27
被引量:17
摘要
Massive open online courses (MOOCs) , which offer open access and widespread interactive participation through the internet, are quickly becoming the preferred method for online and remote learning. Several MOOC platforms offer the service of course recommendation to users, to improve the learning experience of users. Despite the usefulness of this service, we consider that recommending courses to users directly may neglect their varying degrees of expertise. To mitigate this gap, we examine an interesting problem of concept recommendation in this paper, which can be viewed as recommending knowledge to users in a fine-grained way. We put forward a novel approach, termed HinCRec-RL, for C oncept Rec ommendation in MOOCs, which is based on H eterogeneous I nformation N etworks and R einforcement L earning . In particular, we propose to shape the problem of concept recommendation within a reinforcement learning framework to characterize the dynamic interaction between users and knowledge concepts in MOOCs. Furthermore, we propose to form the interactions among users, courses, videos, and concepts into a heterogeneous information network (HIN) to learn the semantic user representations better. We then employ an attentional graph neural network to represent the users in the HIN, based on meta-paths. Extensive experiments are conducted on a real-world dataset collected from a Chinese MOOC platform, XuetangX , to validate the efficacy of our proposed HinCRec-RL. Experimental results and analysis demonstrate that our proposed HinCRec-RL performs well when compared with several state-of-the-art models.
科研通智能强力驱动
Strongly Powered by AbleSci AI