Predicting new-onset stroke with machine learning: development of a model integrating traditional Chinese and western medicine

西医 冲程(发动机) 医学 替代医学 传统医学 中医药 人工智能 机器学习 计算机科学 工程类 病理 机械工程
作者
Liuding Wang,Jingzi Shi,Lina Miao,Yifan Chen,Jingjing Wei,Min Jia,Zhi-yi Gong,Ze Yang,Jian Lyu,Zhang Yunling,Xiao Liang
出处
期刊:Frontiers in Pharmacology [Frontiers Media SA]
卷期号:16
标识
DOI:10.3389/fphar.2025.1546878
摘要

Introduction The integration of traditional Chinese medicine (TCM) and Western medicine has demonstrated effectiveness in the primary prevention of stroke. Therefore, our study aims to utilize TCM syndromes alongside conventional risk factors as predictive variables to construct a machine learning model for assessing the risk of new-onset stroke. Methods We conducted a ten-year follow-up study encompassing 4,511 participants from multiple Chinese community hospitals. The dependent variable was the occurrence of the new-onset stroke, while independent variables included age, gender, systolic blood pressure (SBP), diabetes, blood lipids, carotid atherosclerosis, smoking status, and TCM syndromes. We developed the models using XGBoost in conjunction with SHapley Additive exPlanations (SHAP) for interpretability, and logistic regression with a nomogram for clinical application. Results A total of 1,783 individuals were included (1,248 in the training set and 535 in the validation set), with 110 patients diagnosed with new-onset stroke. The logistic model demonstrated an AUC of 0.746 (95% CI : 0.719–0.774) in the training set and 0.658 (95% CI : 0.572–0.745) in the validation set. The XGBoost model achieved a training set AUC of 0.811 (95% CI : 0.788–0.834) and a validation set AUC of 0.628 (95% CI : 0.537–0.719). SHAP analysis showed that elevated SBP, Fire syndrome in TCM, and carotid atherosclerosis were the three most important features for predicting the new-onset stroke. Conclusion Under identical traditional risk factors, Chinese residents with Fire syndrome may have a higher risk of new-onset stroke. In high-risk populations for stroke, it is recommended to prioritize the screening and management of hypertension, Fire syndrome, and carotid atherosclerosis. However, future high-performance TCM predictive models require more objective and larger datasets for optimization.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
敢超发布了新的文献求助10
1秒前
无聊先知发布了新的文献求助10
2秒前
3秒前
edtaa发布了新的文献求助30
3秒前
zz完成签到 ,获得积分10
4秒前
科研通AI5应助向聿采纳,获得10
4秒前
研新发布了新的文献求助10
4秒前
沉默的玻璃猪完成签到,获得积分10
5秒前
领导范儿应助Air采纳,获得10
5秒前
5秒前
Lucy完成签到,获得积分10
5秒前
cxt发布了新的文献求助10
6秒前
6秒前
7秒前
大个应助康康采纳,获得30
7秒前
搜集达人应助jjjwln采纳,获得10
9秒前
maox1aoxin应助敬老院N号采纳,获得40
9秒前
秋白华落霜完成签到,获得积分10
9秒前
随风完成签到,获得积分10
9秒前
万能图书馆应助念念采纳,获得30
9秒前
10秒前
聪慧千亦发布了新的文献求助10
10秒前
GGBO应助小欣6116采纳,获得10
10秒前
hahatosky完成签到,获得积分10
10秒前
2393843435发布了新的文献求助10
10秒前
葡萄发布了新的文献求助10
10秒前
11秒前
11秒前
勤劳冰夏完成签到 ,获得积分10
11秒前
科研通AI5应助tufu采纳,获得10
12秒前
Faine完成签到 ,获得积分10
12秒前
DDDD应助CC采纳,获得30
12秒前
Jane完成签到,获得积分10
12秒前
白菜发布了新的文献求助10
12秒前
榜一大哥的负担完成签到 ,获得积分10
12秒前
冷酷沛柔发布了新的文献求助20
13秒前
Jasper应助旺阿旺采纳,获得10
13秒前
晚风应助Abi采纳,获得10
14秒前
15秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 710
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3563968
求助须知:如何正确求助?哪些是违规求助? 3137214
关于积分的说明 9421470
捐赠科研通 2837605
什么是DOI,文献DOI怎么找? 1559926
邀请新用户注册赠送积分活动 729224
科研通“疑难数据库(出版商)”最低求助积分说明 717199