Cryopolymerization‐Enabled Superelastic and Thermomechanically Robust Silica‐Sheathing Nanofibrous Aerogels for Solar‐Thermal Regulatory Cooling

材料科学 热的 复合材料 物理 气象学
作者
Jiahui Sun,Yiting Zhang,Yufeng Wang,Yidong Peng,Jiayan Long,Haoran Liu,Wei Fan,Yue‐E Miao,Norbert Willenbacher,Chao Zhang,Tianxi Liu
出处
期刊:Advanced Functional Materials [Wiley]
标识
DOI:10.1002/adfm.202425527
摘要

Abstract Aerogels show significant potential for subambient thermal regulation in energy‐efficient buildings and personal thermal management under intense sunlight and hot conditions owing to their unique combination of thermal superinsulation and solar scattering characteristics. However, traditional aerogels encounter challenges in balancing mechanical flexibility with high‐temperature stability. Herein, a straightforward and scalable cryopolymerization strategy is presented for preparing a superelastic and thermomechanically robust silica‐sheathing nanofibrous aerogel. During cryopolymerization, cryogenic conditions create an ice crystal‐constrained microenvironment with interwoven cellulose nanofibers and concentrated silicate monomers. This confined microenvironment promotes the in situ condensation polymerization of high‐concentration silicates into porous silica nanoclusters predominantly on the nanofiber surfaces, resulting in an aerogel composed of bacterial nanocellulose cores encapsulated by silica sheaths. These aerogels demonstrate remarkable mechanical elasticity and thermal superinsulation, maintaining high stability even after prolonged exposure to calcination at 800 °C and direct exposure to 1200 °C butane flames. By precisely modulating sunlight and mid‐infrared light, these aerogels achieve a high solar reflectivity of 96.2% and an atmospheric window emissivity of 97.5% in extremely hot environments. Consequently, these parasitic‐heat‐insulating aerogels serve as energy‐efficient solar‐thermal regulatory cooling materials, achieving a notable temperature reduction of 11.4 °C for subambient environments under intense sunlight exposure and hot conditions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助哦了欧了采纳,获得10
1秒前
传奇3应助stars采纳,获得10
1秒前
1秒前
LFJ发布了新的文献求助10
1秒前
wangwang发布了新的文献求助50
1秒前
222发布了新的文献求助10
1秒前
田様应助知夏采纳,获得20
2秒前
2秒前
2秒前
酷酷摩托发布了新的文献求助10
3秒前
3秒前
3秒前
鑫问发布了新的文献求助10
4秒前
Jasper应助jjl采纳,获得10
6秒前
6秒前
guang发布了新的文献求助10
7秒前
杳鸢应助单纯的雅香采纳,获得30
8秒前
lalala发布了新的文献求助10
8秒前
佳丽发布了新的文献求助10
8秒前
爱静静应助李剑鸿采纳,获得30
9秒前
麦苗果果发布了新的文献求助100
11秒前
爱静静应助卷心菜采纳,获得10
11秒前
11秒前
13秒前
希望天下0贩的0应助建新采纳,获得10
13秒前
上官若男应助建新采纳,获得30
13秒前
科研通AI5应助建新采纳,获得30
13秒前
科研通AI5应助建新采纳,获得10
13秒前
13秒前
科研通AI5应助建新采纳,获得10
13秒前
12完成签到,获得积分10
13秒前
14秒前
傲娇松鼠发布了新的文献求助10
14秒前
佳丽完成签到,获得积分10
14秒前
情怀应助BFQQQQ采纳,获得10
14秒前
完美世界应助w小主采纳,获得10
16秒前
17秒前
Hhh发布了新的文献求助10
18秒前
麦苗果果完成签到,获得积分10
18秒前
杳鸢应助和谐的果汁采纳,获得30
19秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 800
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3555160
求助须知:如何正确求助?哪些是违规求助? 3130863
关于积分的说明 9388950
捐赠科研通 2830329
什么是DOI,文献DOI怎么找? 1555932
邀请新用户注册赠送积分活动 726345
科研通“疑难数据库(出版商)”最低求助积分说明 715734