Cryopolymerization‐Enabled Superelastic and Thermomechanically Robust Silica‐Sheathing Nanofibrous Aerogels for Solar‐Thermal Regulatory Cooling

材料科学 热的 复合材料 气象学 物理
作者
Jiahui Sun,Yiting Zhang,Yufeng Wang,Yidong Peng,Jiayan Long,Haoran Liu,Wei Fan,Yue‐E Miao,Norbert Willenbacher,Chao Zhang,Tianxi Liu
出处
期刊:Advanced Functional Materials [Wiley]
标识
DOI:10.1002/adfm.202425527
摘要

Abstract Aerogels show significant potential for subambient thermal regulation in energy‐efficient buildings and personal thermal management under intense sunlight and hot conditions owing to their unique combination of thermal superinsulation and solar scattering characteristics. However, traditional aerogels encounter challenges in balancing mechanical flexibility with high‐temperature stability. Herein, a straightforward and scalable cryopolymerization strategy is presented for preparing a superelastic and thermomechanically robust silica‐sheathing nanofibrous aerogel. During cryopolymerization, cryogenic conditions create an ice crystal‐constrained microenvironment with interwoven cellulose nanofibers and concentrated silicate monomers. This confined microenvironment promotes the in situ condensation polymerization of high‐concentration silicates into porous silica nanoclusters predominantly on the nanofiber surfaces, resulting in an aerogel composed of bacterial nanocellulose cores encapsulated by silica sheaths. These aerogels demonstrate remarkable mechanical elasticity and thermal superinsulation, maintaining high stability even after prolonged exposure to calcination at 800 °C and direct exposure to 1200 °C butane flames. By precisely modulating sunlight and mid‐infrared light, these aerogels achieve a high solar reflectivity of 96.2% and an atmospheric window emissivity of 97.5% in extremely hot environments. Consequently, these parasitic‐heat‐insulating aerogels serve as energy‐efficient solar‐thermal regulatory cooling materials, achieving a notable temperature reduction of 11.4 °C for subambient environments under intense sunlight exposure and hot conditions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助cch采纳,获得10
1秒前
学术屎壳郎完成签到,获得积分10
1秒前
Siqi发布了新的文献求助30
2秒前
内向翰完成签到,获得积分10
3秒前
3秒前
4秒前
dreamdraver完成签到,获得积分10
4秒前
4秒前
4秒前
One应助xh采纳,获得10
4秒前
羊羊羊完成签到,获得积分10
5秒前
5秒前
6秒前
Eileen完成签到,获得积分10
6秒前
所所应助HY采纳,获得10
6秒前
7秒前
9秒前
科研通AI2S应助QQ采纳,获得10
9秒前
Enchanted发布了新的文献求助10
9秒前
9秒前
赘婿应助多情的忆之采纳,获得10
10秒前
10秒前
茶冻芭乐发布了新的文献求助10
10秒前
11秒前
Siqi完成签到,获得积分20
11秒前
11秒前
11秒前
11秒前
wenbin发布了新的文献求助10
12秒前
独特谷丝完成签到,获得积分10
12秒前
12秒前
华仔应助AmbitionY采纳,获得10
13秒前
pears发布了新的文献求助10
13秒前
rtx00发布了新的文献求助10
13秒前
Georgechan发布了新的文献求助30
14秒前
14秒前
Ndqq发布了新的文献求助10
15秒前
ll发布了新的文献求助10
16秒前
16秒前
Wzx发布了新的文献求助10
17秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 1000
CRC Handbook of Chemistry and Physics 104th edition 1000
Izeltabart tapatansine - AdisInsight 600
An International System for Human Cytogenomic Nomenclature (2024) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3769147
求助须知:如何正确求助?哪些是违规求助? 3314193
关于积分的说明 10171062
捐赠科研通 3029255
什么是DOI,文献DOI怎么找? 1662296
邀请新用户注册赠送积分活动 794827
科研通“疑难数据库(出版商)”最低求助积分说明 756421