Enhancing Aspect Sentiment Classification with Dual-Channel Graph Convolutional Network

计算机科学 图形 对偶(语法数字) 卷积神经网络 人工智能 理论计算机科学 文学类 艺术
作者
Xin Sun,Y. Mi,Hongao Li
出处
期刊:ACM Transactions on Intelligent Systems and Technology [Association for Computing Machinery]
标识
DOI:10.1145/3721844
摘要

Aspect sentiment classification (ASC) constitutes a crucial research area within sentiment analysis tasks, aiming to predict sentiment polarity towards different aspects in given contexts. Identifying the relations between aspects and sentiments can be a challenging task, as aspects and sentiments are not always predefined. Most existing studies have demonstrated the effectiveness of using dependency parsing tree and graph convolutional network (GCN), achieving good experimental results. However, existing methods have mainly focused on either semantic or syntactic information individually, and may introduce errors when the input sentence lacks clear syntactic information. To address these issues, we propose a novel approach based on Dual-Channel Graph Convolutional Network (DC-GCN), which integrates feature fusion within a dual-channel architecture. Our model can effectively capture the semantic information and enhance the feature representation of syntactic structures by introducing the multi-head self-attention graph convolution, guided by the TopK strategy, and the directional densely connected graph convolutional network. We further employ a bi-affine strategy and multi-layer perceptron to integrate semantic and syntactic information. Experimental results on publicly available datasets demonstrate the superior performance of our model over state-of-the-art methods. Specifically, our model improves upon baseline models on the Twitter, Lap14, Rest14, Rest15, and Rest16 datasets, with increases in accuracy/macro-F1 scores of 0.06/0.58, 0.58/0.47, 0.25/1.19, 0.23/1.05, and 0.36/1.32, respectively.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
脑洞疼应助静推氯化钾采纳,获得10
1秒前
战战完成签到,获得积分10
1秒前
1秒前
1秒前
sci完成签到,获得积分10
3秒前
我爱酸菜鱼完成签到,获得积分10
4秒前
hai完成签到,获得积分10
4秒前
零蝉给零蝉的求助进行了留言
5秒前
123456yyds发布了新的文献求助10
5秒前
小熊座a发布了新的文献求助10
5秒前
BIUBIU发布了新的文献求助10
5秒前
5秒前
上官若男应助臧臧采纳,获得10
5秒前
赘婿应助噜啦噜啦采纳,获得10
5秒前
ding应助Aslande采纳,获得10
5秒前
清和完成签到,获得积分20
7秒前
9秒前
samara完成签到,获得积分10
9秒前
9秒前
搜集达人应助x笑一采纳,获得10
9秒前
大鑫发布了新的文献求助10
11秒前
11秒前
11秒前
黑翅鸢应助kang采纳,获得10
11秒前
w_关闭了w_文献求助
11秒前
12秒前
13秒前
笨蛋没烦恼完成签到 ,获得积分10
13秒前
14秒前
14秒前
14秒前
15秒前
8788完成签到,获得积分10
15秒前
a焦发布了新的文献求助10
15秒前
机智的夜云完成签到,获得积分10
15秒前
李健的小迷弟应助小甑采纳,获得10
16秒前
直率心锁发布了新的文献求助10
16秒前
17秒前
天真之桃发布了新的文献求助10
18秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Conference Record, IAS Annual Meeting 1977 1050
Les Mantodea de Guyane Insecta, Polyneoptera 1000
England and the Discovery of America, 1481-1620 600
Teaching language in context (Third edition) by Derewianka, Beverly; Jones, Pauline 550
Oligonucleotide Synthesis: a Practical Approach 500
Plant–Pollinator Interactions: From Specialization to Generalization 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3589569
求助须知:如何正确求助?哪些是违规求助? 3157863
关于积分的说明 9517794
捐赠科研通 2860923
什么是DOI,文献DOI怎么找? 1572096
邀请新用户注册赠送积分活动 737683
科研通“疑难数据库(出版商)”最低求助积分说明 722502