已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Computational drug discovery of an inhibitor of APOBEC3B as a treatment for epithelial cancers

药物发现 计算生物学 药品 生物 癌症研究 医学 化学 药理学 生物信息学
作者
Dominic A. Caputa,Quin P. Blankenship,Zachary D. Smith,Molly M. Huebner,Zoe A. Vetter,Richard W. Parks,Saul Armendariz Lobera,Emmett M. Leddin,C. Taylor,Carol A. Parish,Bill R. Miller
出处
期刊:Journal of Biomolecular Structure & Dynamics [Informa]
卷期号:: 1-14
标识
DOI:10.1080/07391102.2023.2293269
摘要

Cancer is one of the leading causes of death in the U.S., and tumorous cancers such as cervical, lung, breast, and ovarian cancers are the most common types. APOBEC3B is a nonessential cytidine deaminase found in humans and theorized to defend against viral infection. However, overexpression of APOBEC3B is linked to cancer in humans, which makes APOBEC3B a potential cancer treatment target through competitive inhibition for several tumorous cancers. Computational studies can help reveal a small molecule inhibitor using high-throughput virtual screening of millions of candidates with relatively little cost. This study aims to narrow the field of potential APOBEC3B inhibition candidates for future in vitro assays and provide an effective scaffold for drug design studies. Another goal of this project is to provide critical amino acid targets in the active site for future drug design studies. This study simulated 7.8 million drug candidates using high-throughput virtual screening and further processed the top scoring 241 molecules from AutoDock Vina, DOCK 6, and de novo design. Using virtual screening, de novo design, and molecular dynamics simulations, a competitive inhibitor candidate was discovered with an average binding free energy score of −46.03 kcal/mol, more than 10 kcal/mol better than the substrate control (dCMP). These results indicate that this molecule (or a structural derivative) may be an effective inhibitor of APOBEC3B and prevent host genome mutagenesis resulting from protein overexpression. Another important finding is the confirmation of essential amino acid targets, such as Tyr250 and Gln213 within the active site of APOBEC3B. Therefore, study used novel computational methods to provide a theoretical scaffold for future drug design studies that may prove useful as a treatment for epithelial cancers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Doris发布了新的文献求助10
2秒前
在水一方应助诺木采纳,获得10
6秒前
英俊的铭应助Herry采纳,获得10
6秒前
7秒前
7秒前
呜呼发布了新的文献求助10
9秒前
faye完成签到,获得积分10
9秒前
叮当完成签到,获得积分10
11秒前
小汪家发布了新的文献求助10
12秒前
ff发布了新的文献求助10
12秒前
因子完成签到,获得积分10
13秒前
15秒前
Jasper应助Jacqueline777采纳,获得10
15秒前
16秒前
科研通AI2S应助好哥哥采纳,获得10
16秒前
18秒前
彭于晏应助呜呼采纳,获得10
18秒前
乔达摩悉达多完成签到 ,获得积分10
18秒前
有魅力的书本完成签到 ,获得积分10
19秒前
20秒前
调研昵称发布了新的文献求助10
20秒前
21秒前
ff完成签到,获得积分10
23秒前
精明平露发布了新的文献求助10
24秒前
米米完成签到,获得积分10
26秒前
因子发布了新的文献求助10
27秒前
maven给maven的求助进行了留言
28秒前
认真的沛容完成签到 ,获得积分10
29秒前
Jiangnj完成签到,获得积分10
31秒前
31秒前
小汪家完成签到,获得积分20
32秒前
小马不会做科研完成签到,获得积分10
34秒前
cielo发布了新的文献求助10
35秒前
科研通AI40应助冷静灵竹采纳,获得30
36秒前
youyou糍粑发布了新的文献求助10
36秒前
37秒前
yanhan2009完成签到 ,获得积分10
38秒前
儒雅涵易完成签到 ,获得积分10
42秒前
42秒前
高分求助中
Genetics: From Genes to Genomes 3000
Production Logging: Theoretical and Interpretive Elements 2500
Continuum thermodynamics and material modelling 2000
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Diabetes: miniguías Asklepios 800
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3471262
求助须知:如何正确求助?哪些是违规求助? 3064176
关于积分的说明 9087771
捐赠科研通 2754973
什么是DOI,文献DOI怎么找? 1511673
邀请新用户注册赠送积分活动 698560
科研通“疑难数据库(出版商)”最低求助积分说明 698423