Adaptive Device-Edge Collaboration on DNN Inference in AIoT: A Digital-Twin-Assisted Approach

计算机科学 推论 GSM演进的增强数据速率 人工智能 计算机网络
作者
Shisheng Hu,Mushu Li,Jie Gao,Conghao Zhou,Xuemin Shen
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:11 (7): 12893-12908 被引量:6
标识
DOI:10.1109/jiot.2023.3336600
摘要

Device-edge collaboration on deep neural network (DNN) inference is a promising approach to efficiently utilizing network resources for supporting artificial intelligence of things (AIoT) applications. In this paper, we propose a novel digital twin (DT)-assisted approach to device-edge collaboration on DNN inference that determines whether and when to stop local inference at a device and upload the intermediate results to complete the inference on an edge server. Instead of determining the collaboration for each DNN inference task only upon its generation, multi-step decision-making is performed during the on-device inference to adapt to the dynamic computing workload status at the device and the edge server. To enhance the adaptivity, a DT is constructed to evaluate all potential offloading decisions for each DNN inference task, which provides augmented training data for a machine learning-assisted decision-making algorithm. Then, another DT is constructed to estimate the inference status at the device to avoid frequently fetching the status information from the device, thus reducing the signaling overhead. We also derive necessary conditions for optimal offloading decisions to reduce the offloading decision space. Simulation results demon-strate the outstanding performance of our DT-assisted approach in terms of balancing the tradeoff among inference accuracy, delay, and energy consumption.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
kiriya发布了新的文献求助10
刚刚
lll发布了新的文献求助10
刚刚
1秒前
yaoooooo应助华仔采纳,获得30
3秒前
美丽乾发布了新的文献求助10
4秒前
烟花应助monkey采纳,获得10
5秒前
研友_Lw7MKL完成签到,获得积分10
5秒前
李爱国应助解青文采纳,获得10
5秒前
单纯代萱发布了新的文献求助50
5秒前
Jasper应助聪慧代天采纳,获得30
6秒前
kiriya完成签到,获得积分20
6秒前
满意冰珍完成签到 ,获得积分10
8秒前
zjspidany应助kiriya采纳,获得10
13秒前
14秒前
14秒前
hygge完成签到,获得积分20
15秒前
15秒前
孤独靖柏发布了新的文献求助10
19秒前
张泽东完成签到 ,获得积分10
19秒前
医者发布了新的文献求助10
20秒前
聪慧代天发布了新的文献求助30
20秒前
kami完成签到 ,获得积分10
21秒前
今我来思发布了新的文献求助30
22秒前
wanci应助青青采纳,获得10
22秒前
爆米花应助thirteen采纳,获得10
22秒前
木维完成签到,获得积分10
25秒前
Hello应助愉快乌采纳,获得10
26秒前
enchanted发布了新的文献求助10
26秒前
JamesPei应助lizeyu采纳,获得10
27秒前
Monkey_programer完成签到,获得积分10
28秒前
汉堡包应助杨哈哈采纳,获得10
28秒前
29秒前
31秒前
31秒前
聪慧代天完成签到,获得积分20
31秒前
32秒前
Baozi发布了新的文献求助10
33秒前
jideli发布了新的文献求助10
35秒前
现代的竺完成签到,获得积分20
37秒前
37秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1800
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
How Maoism Was Made: Reconstructing China, 1949-1965 800
Barge Mooring (Oilfield Seamanship Series Volume 6) 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3314062
求助须知:如何正确求助?哪些是违规求助? 2946490
关于积分的说明 8530274
捐赠科研通 2622160
什么是DOI,文献DOI怎么找? 1434341
科研通“疑难数据库(出版商)”最低求助积分说明 665242
邀请新用户注册赠送积分活动 650804