Temporal inductive path neural network for temporal knowledge graph reasoning

计算机科学 图形 时态数据库 知识图 理论计算机科学 代表(政治) 人工智能 数据挖掘 政治 政治学 法学
作者
Hao Dong,Pengyang Wang,Meng Xiao,Zhiyuan Ning,Pengfei Wang,Yuanchun Zhou
出处
期刊:Artificial Intelligence [Elsevier BV]
卷期号:329: 104085-104085 被引量:6
标识
DOI:10.1016/j.artint.2024.104085
摘要

Temporal Knowledge Graph (TKG) is an extension of traditional Knowledge Graph (KG) that incorporates the dimension of time. Reasoning on TKGs is a crucial task that aims to predict future facts based on historical occurrences. The key challenge lies in uncovering structural dependencies within historical subgraphs and temporal patterns. Most existing approaches model TKGs relying on entity modeling, as nodes in the graph play a crucial role in knowledge representation. However, the real-world scenario often involves an extensive number of entities, with new entities emerging over time. This makes it challenging for entity-dependent methods to cope with extensive volumes of entities, and effectively handling newly emerging entities also becomes a significant challenge. Therefore, we propose Temporal Inductive Path Neural Network (TiPNN), which models historical information in an entity-independent perspective. Specifically, TiPNN adopts a unified graph, namely history temporal graph, to comprehensively capture and encapsulate information from history. Subsequently, we utilize the defined query-aware temporal paths on a history temporal graph to model historical path information related to queries for reasoning. Extensive experiments illustrate that the proposed model not only attains significant performance enhancements but also handles inductive settings, while additionally facilitating the provision of reasoning evidence through history temporal graphs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
mylaodao完成签到,获得积分0
1秒前
2秒前
甜甜圈完成签到 ,获得积分10
2秒前
shidewu完成签到,获得积分10
2秒前
大福完成签到,获得积分0
2秒前
3秒前
3秒前
hqq发布了新的文献求助10
6秒前
kiki发布了新的文献求助10
6秒前
whisper完成签到,获得积分10
6秒前
11秒前
orixero应助kiki采纳,获得10
12秒前
香蕉觅云应助张小卷采纳,获得10
12秒前
her完成签到,获得积分10
12秒前
16秒前
16秒前
17秒前
18秒前
18秒前
星辰坠于海应助Sunny88采纳,获得50
20秒前
21秒前
酷酷一笑发布了新的文献求助10
22秒前
嗯嗯发布了新的文献求助10
22秒前
SHANEE完成签到,获得积分10
22秒前
张小卷发布了新的文献求助10
24秒前
猪猪hero发布了新的文献求助10
24秒前
24秒前
可爱的函函应助果实采纳,获得10
24秒前
hqq发布了新的文献求助10
25秒前
25秒前
26秒前
SDFSGFDR完成签到,获得积分10
28秒前
李响完成签到,获得积分10
29秒前
30秒前
31秒前
Tonald Yang发布了新的文献求助10
32秒前
33秒前
丘比特应助hqq采纳,获得10
33秒前
小马完成签到,获得积分10
34秒前
华仔应助昵称采纳,获得10
35秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961075
求助须知:如何正确求助?哪些是违规求助? 3507282
关于积分的说明 11135478
捐赠科研通 3239777
什么是DOI,文献DOI怎么找? 1790434
邀请新用户注册赠送积分活动 872379
科研通“疑难数据库(出版商)”最低求助积分说明 803150