亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Temporal inductive path neural network for temporal knowledge graph reasoning

计算机科学 图形 时态数据库 知识图 理论计算机科学 代表(政治) 人工智能 数据挖掘 政治学 政治 法学
作者
Hao Dong,Pengyang Wang,Meng Xiao,Zhiyuan Ning,Pengfei Wang,Yuanchun Zhou
出处
期刊:Artificial Intelligence [Elsevier]
卷期号:329: 104085-104085 被引量:6
标识
DOI:10.1016/j.artint.2024.104085
摘要

Temporal Knowledge Graph (TKG) is an extension of traditional Knowledge Graph (KG) that incorporates the dimension of time. Reasoning on TKGs is a crucial task that aims to predict future facts based on historical occurrences. The key challenge lies in uncovering structural dependencies within historical subgraphs and temporal patterns. Most existing approaches model TKGs relying on entity modeling, as nodes in the graph play a crucial role in knowledge representation. However, the real-world scenario often involves an extensive number of entities, with new entities emerging over time. This makes it challenging for entity-dependent methods to cope with extensive volumes of entities, and effectively handling newly emerging entities also becomes a significant challenge. Therefore, we propose Temporal Inductive Path Neural Network (TiPNN), which models historical information in an entity-independent perspective. Specifically, TiPNN adopts a unified graph, namely history temporal graph, to comprehensively capture and encapsulate information from history. Subsequently, we utilize the defined query-aware temporal paths on a history temporal graph to model historical path information related to queries for reasoning. Extensive experiments illustrate that the proposed model not only attains significant performance enhancements but also handles inductive settings, while additionally facilitating the provision of reasoning evidence through history temporal graphs.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
kale123发布了新的文献求助10
3秒前
研友_89eKw8发布了新的文献求助10
3秒前
3秒前
蚌医闫志发布了新的文献求助10
7秒前
蓝华完成签到 ,获得积分10
10秒前
10秒前
蚌医闫志完成签到,获得积分10
16秒前
gexzygg应助科研通管家采纳,获得10
27秒前
32秒前
linlinliu发布了新的文献求助30
37秒前
1分钟前
kale123完成签到,获得积分20
1分钟前
gexzygg应助Li采纳,获得10
1分钟前
2分钟前
gexzygg应助科研通管家采纳,获得10
2分钟前
gexzygg应助科研通管家采纳,获得10
2分钟前
gexzygg应助科研通管家采纳,获得10
2分钟前
gexzygg应助科研通管家采纳,获得10
2分钟前
2分钟前
3分钟前
jasonwee发布了新的文献求助10
3分钟前
3分钟前
3分钟前
Jasper应助单薄水星采纳,获得10
3分钟前
3分钟前
gexzygg应助科研通管家采纳,获得10
4分钟前
gexzygg应助科研通管家采纳,获得10
4分钟前
gexzygg应助科研通管家采纳,获得10
4分钟前
gexzygg应助科研通管家采纳,获得10
4分钟前
gexzygg应助科研通管家采纳,获得10
4分钟前
4分钟前
gexzygg应助科研通管家采纳,获得10
4分钟前
4分钟前
Gryff完成签到 ,获得积分10
4分钟前
量子星尘发布了新的文献求助10
4分钟前
5分钟前
zxcvvbb1001完成签到 ,获得积分10
6分钟前
gexzygg应助科研通管家采纳,获得10
6分钟前
gexzygg应助科研通管家采纳,获得10
6分钟前
gexzygg应助科研通管家采纳,获得10
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5549249
求助须知:如何正确求助?哪些是违规求助? 4634593
关于积分的说明 14634876
捐赠科研通 4576049
什么是DOI,文献DOI怎么找? 2509476
邀请新用户注册赠送积分活动 1485332
关于科研通互助平台的介绍 1456512