Temporal inductive path neural network for temporal knowledge graph reasoning

计算机科学 图形 时态数据库 知识图 理论计算机科学 代表(政治) 人工智能 数据挖掘 政治学 政治 法学
作者
Hao Dong,Pengyang Wang,Meng Xiao,Zhiyuan Ning,Pengfei Wang,Yuanchun Zhou
出处
期刊:Artificial Intelligence [Elsevier BV]
卷期号:329: 104085-104085 被引量:6
标识
DOI:10.1016/j.artint.2024.104085
摘要

Temporal Knowledge Graph (TKG) is an extension of traditional Knowledge Graph (KG) that incorporates the dimension of time. Reasoning on TKGs is a crucial task that aims to predict future facts based on historical occurrences. The key challenge lies in uncovering structural dependencies within historical subgraphs and temporal patterns. Most existing approaches model TKGs relying on entity modeling, as nodes in the graph play a crucial role in knowledge representation. However, the real-world scenario often involves an extensive number of entities, with new entities emerging over time. This makes it challenging for entity-dependent methods to cope with extensive volumes of entities, and effectively handling newly emerging entities also becomes a significant challenge. Therefore, we propose Temporal Inductive Path Neural Network (TiPNN), which models historical information in an entity-independent perspective. Specifically, TiPNN adopts a unified graph, namely history temporal graph, to comprehensively capture and encapsulate information from history. Subsequently, we utilize the defined query-aware temporal paths on a history temporal graph to model historical path information related to queries for reasoning. Extensive experiments illustrate that the proposed model not only attains significant performance enhancements but also handles inductive settings, while additionally facilitating the provision of reasoning evidence through history temporal graphs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
IDneverd完成签到,获得积分10
刚刚
美满的泥猴桃完成签到,获得积分10
1秒前
lilili发布了新的文献求助10
1秒前
SciGPT应助LI采纳,获得10
2秒前
顾矜应助桑榆非晚采纳,获得10
3秒前
zzz发布了新的文献求助10
4秒前
犹豫如蓉发布了新的文献求助30
4秒前
斯文败类应助han采纳,获得10
4秒前
zegrclbxw关注了科研通微信公众号
7秒前
9秒前
11秒前
单纯的幻竹完成签到,获得积分10
11秒前
LI完成签到,获得积分10
12秒前
13秒前
科研通AI5应助DH采纳,获得10
13秒前
CipherSage应助谦让小玉采纳,获得10
13秒前
Owen应助陆黎采纳,获得10
14秒前
14秒前
阳静完成签到 ,获得积分10
14秒前
monned发布了新的文献求助10
16秒前
16秒前
han发布了新的文献求助10
17秒前
太阳完成签到,获得积分10
18秒前
小盼盼盼发布了新的文献求助10
19秒前
三十七度二应助刘松采纳,获得10
20秒前
11关注了科研通微信公众号
20秒前
孤之越影发布了新的文献求助30
20秒前
22秒前
顾矜应助深情凡灵采纳,获得10
24秒前
25秒前
求助吃草小河马完成签到,获得积分10
25秒前
26秒前
26秒前
suyaaaaa完成签到 ,获得积分10
27秒前
yyf发布了新的文献求助10
27秒前
27秒前
热衷完成签到,获得积分10
28秒前
77完成签到,获得积分10
28秒前
游畅发布了新的文献求助10
32秒前
33秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
Textbook of Neonatal Resuscitation ® 500
Why Neuroscience Matters in the Classroom 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5050331
求助须知:如何正确求助?哪些是违规求助? 4278065
关于积分的说明 13335304
捐赠科研通 4092980
什么是DOI,文献DOI怎么找? 2239988
邀请新用户注册赠送积分活动 1246687
关于科研通互助平台的介绍 1175504