Temporal inductive path neural network for temporal knowledge graph reasoning

计算机科学 图形 时态数据库 知识图 理论计算机科学 代表(政治) 人工智能 数据挖掘 政治学 政治 法学
作者
Hao Dong,Pengyang Wang,Meng Xiao,Zhiyuan Ning,Pengfei Wang,Yuanchun Zhou
出处
期刊:Artificial Intelligence [Elsevier BV]
卷期号:329: 104085-104085 被引量:6
标识
DOI:10.1016/j.artint.2024.104085
摘要

Temporal Knowledge Graph (TKG) is an extension of traditional Knowledge Graph (KG) that incorporates the dimension of time. Reasoning on TKGs is a crucial task that aims to predict future facts based on historical occurrences. The key challenge lies in uncovering structural dependencies within historical subgraphs and temporal patterns. Most existing approaches model TKGs relying on entity modeling, as nodes in the graph play a crucial role in knowledge representation. However, the real-world scenario often involves an extensive number of entities, with new entities emerging over time. This makes it challenging for entity-dependent methods to cope with extensive volumes of entities, and effectively handling newly emerging entities also becomes a significant challenge. Therefore, we propose Temporal Inductive Path Neural Network (TiPNN), which models historical information in an entity-independent perspective. Specifically, TiPNN adopts a unified graph, namely history temporal graph, to comprehensively capture and encapsulate information from history. Subsequently, we utilize the defined query-aware temporal paths on a history temporal graph to model historical path information related to queries for reasoning. Extensive experiments illustrate that the proposed model not only attains significant performance enhancements but also handles inductive settings, while additionally facilitating the provision of reasoning evidence through history temporal graphs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
kk发布了新的文献求助10
1秒前
研友_nqr2pZ完成签到,获得积分10
2秒前
狂野的海完成签到 ,获得积分10
2秒前
西瓜西瓜完成签到,获得积分10
2秒前
3秒前
科研_小白完成签到,获得积分10
3秒前
3秒前
风中冰蝶完成签到,获得积分10
3秒前
4秒前
ikun完成签到,获得积分10
4秒前
善学以致用应助风灵卫采纳,获得10
4秒前
sunday2024完成签到,获得积分10
4秒前
性感母蟑螂完成签到 ,获得积分10
4秒前
heyan完成签到,获得积分10
4秒前
Wy21完成签到,获得积分10
5秒前
勤劳傲安完成签到,获得积分20
5秒前
5秒前
6秒前
6秒前
刘运丽完成签到,获得积分10
6秒前
感动的煜城完成签到,获得积分10
6秒前
研友_LpQj3n发布了新的文献求助80
6秒前
6秒前
孙传彬完成签到,获得积分20
6秒前
啧啧啧完成签到,获得积分10
6秒前
胖鲤鱼完成签到,获得积分10
7秒前
shiwo110完成签到,获得积分10
7秒前
FashionBoy应助西瓜皮采纳,获得10
8秒前
汉堡包应助王聪颖采纳,获得10
8秒前
张张张完成签到,获得积分10
8秒前
largedream完成签到,获得积分10
8秒前
Wy21发布了新的文献求助10
8秒前
gmaster完成签到,获得积分10
8秒前
打打应助清秀颜演采纳,获得10
9秒前
嗨皮y完成签到 ,获得积分10
9秒前
9秒前
10秒前
无辜的姒发布了新的文献求助10
10秒前
Luckqi6688完成签到,获得积分10
10秒前
高分求助中
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
Psychology for Teachers 220
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4598793
求助须知:如何正确求助?哪些是违规求助? 4009629
关于积分的说明 12412676
捐赠科研通 3689263
什么是DOI,文献DOI怎么找? 2033740
邀请新用户注册赠送积分活动 1066866
科研通“疑难数据库(出版商)”最低求助积分说明 951962