亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Grid-tuned ensemble models for 2D spectrogram-based autism classification

光谱图 计算机科学 网格 自闭症 模式识别(心理学) 人工智能 语音识别 数学 心理学 发展心理学 几何学
作者
Muhammad Zakir Ullah,Daren Yu
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:93: 106151-106151
标识
DOI:10.1016/j.bspc.2024.106151
摘要

Autism spectrum disorder (ASD) is a prevalent collection of developmental disorders that affects around one in every 36 children worldwide. Since autistic children exhibit aberrant electroencephalogram (EEG) signals in comparison to typically developing (TD) children, many authors have recently proposed several machine learning (ML) and deep learning (DL) models to classify ASD patients using EEG signals. However, these models lack extensive and large-scale feature extraction and apply multiple benchmark datasets. Furthermore, most of the proposed ML models need feature engineering to extract key features for classification. This study proposed a DL-based weighted ensemble model to avoid the need for feature engineering. The proposed model is based on finding the best suitable combination of weights using a grid search strategy, treating the highest weighted model as the most accurate, and giving more weightage. The strength of the suggested technique involves extracting features from EEG recordings by transforming raw EEG into multi-channel two-dimensional time–frequency maps (2D spectrograms) using the short-time Fourier transform (STFT). Furthermore, it applies two widely-researched public EEG datasets [i.e., the King Abdulaziz University (KAU) and the University of Sheffield (TUOS) databases] for performance comparison and better generalizability. Additionally, the performance of the proposed model has been compared with other well-known DL models, and our proposed straightforward, easily implemented models surpass these models in terms of accuracy and training time. The suggested model yields an accuracy of 94.71% for ASD classification using the KAU dataset and 96.22% accuracy for utilizing the TUOS dataset. Ensembled models can efficiently enhance accuracy, stability, and reproducibility. The demonstrated finding solidifies the applicability of the weighted ensemble model to classify ASD patients utilizing EEG data. The suggested model might be used as a supplemental tool to assist neurologists in diagnosing ASD.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
WCQ完成签到 ,获得积分10
刚刚
orixero应助LZHWSND采纳,获得10
5秒前
Qvby3完成签到 ,获得积分10
8秒前
9秒前
10秒前
纳兰若微应助sshusband采纳,获得10
13秒前
听闻墨笙完成签到 ,获得积分10
14秒前
多看文献发布了新的文献求助10
15秒前
小鸟芋圆露露完成签到 ,获得积分10
18秒前
陈灵均完成签到,获得积分10
18秒前
19秒前
小可完成签到 ,获得积分10
19秒前
LZHWSND发布了新的文献求助10
22秒前
30秒前
顾矜应助hellokk采纳,获得10
31秒前
恶恶么v完成签到,获得积分10
33秒前
科研通AI2S应助科研通管家采纳,获得10
34秒前
东方宏应助科研通管家采纳,获得60
34秒前
科研通AI2S应助科研通管家采纳,获得30
34秒前
科研通AI2S应助科研通管家采纳,获得10
34秒前
无谓完成签到,获得积分10
37秒前
多看文献完成签到,获得积分10
42秒前
43秒前
大月发布了新的文献求助10
44秒前
汉堡包应助司空豁采纳,获得10
45秒前
coffee_code发布了新的文献求助10
46秒前
47秒前
Yu完成签到,获得积分10
49秒前
小蘑菇应助大月采纳,获得10
52秒前
嗝嗝完成签到,获得积分10
54秒前
西门浩宇完成签到 ,获得积分10
57秒前
星宫金魁完成签到 ,获得积分10
58秒前
任性静祝完成签到 ,获得积分10
59秒前
炸鸡叔完成签到 ,获得积分10
1分钟前
顾矜应助武广敏采纳,获得10
1分钟前
大狗砸发布了新的文献求助30
1分钟前
叶子完成签到 ,获得积分10
1分钟前
星宫韩立完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Encyclopedia of Computational Mechanics,2 edition 800
The Healthy Socialist Life in Maoist China 600
The Vladimirov Diaries [by Peter Vladimirov] 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3271437
求助须知:如何正确求助?哪些是违规求助? 2910674
关于积分的说明 8355402
捐赠科研通 2581109
什么是DOI,文献DOI怎么找? 1404001
科研通“疑难数据库(出版商)”最低求助积分说明 656054
邀请新用户注册赠送积分活动 635530