Ultrasensitive Online NO Sensor Based on a Distributed Parallel Self-Regulating Neural Network and Ultraviolet Differential Optical Absorption Spectroscopy for Exhaled Breath Diagnosis

吸收(声学) 紫外线 气体分析呼吸 光谱学 紫外可见光谱 呼出的空气 材料科学 计算机科学 差分吸收光谱 化学 光电子学 物理 色谱法 有机化学 复合材料 生物 量子力学 毒理
作者
Rui Zhu,Jie Gao,Mu Li,Yongqi Wu,Qiang Gao,Xijun Wu,Yungang Zhang
出处
期刊:ACS Sensors [American Chemical Society]
卷期号:9 (3): 1499-1507 被引量:11
标识
DOI:10.1021/acssensors.3c02625
摘要

The concentration of fractional exhaled nitric oxide (FeNO) is closely related to human respiratory inflammation, and the detection of its concentration plays a key role in aiding diagnosing inflammatory airway diseases. In this paper, we report a gas sensor system based on a distributed parallel self-regulating neural network (DPSRNN) model combined with ultraviolet differential optical absorption spectroscopy for detecting ppb-level FeNO concentrations. The noise signals in the spectrum are eliminated by discrete wavelet transform. The DPSRNN model is then built based on the separated multipeak characteristic absorption structure of the UV absorption spectrum of NO. Furthermore, a distributed parallel network structure is built based on each absorption feature region, which is given self-regulating weights and finally trained by a unified model structure. The final self-regulating weights obtained by the model indicate that each absorption feature region contributes a different weight to the concentration prediction. Compared with the regular convolutional neural network model structure, the proposed model has better performance by considering the effect of separated characteristic absorptions in the spectrum on the concentration and breaking the habit of bringing the spectrum as a whole into the model training in previous related studies. Lab-based results show that the sensor system can stably achieve high-precision detection of NO (2.59-750.66 ppb) with a mean absolute error of 0.17 ppb and a measurement accuracy of 0.84%, which is the best result to date. More interestingly, the proposed sensor system is capable of achieving high-precision online detection of FeNO, as confirmed by the exhaled breath analysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
7秒前
特别圆的正方形完成签到 ,获得积分10
7秒前
Ding-Ding完成签到,获得积分10
10秒前
独孤完成签到 ,获得积分10
11秒前
elmqs完成签到,获得积分10
13秒前
悟空发布了新的文献求助10
14秒前
lingling完成签到 ,获得积分10
14秒前
16秒前
lzx应助科研通管家采纳,获得100
29秒前
英姑应助科研通管家采纳,获得10
29秒前
研友Bn完成签到 ,获得积分10
29秒前
海英完成签到,获得积分10
32秒前
monster完成签到 ,获得积分10
33秒前
Alan完成签到 ,获得积分10
36秒前
九零后无心完成签到,获得积分10
37秒前
46秒前
qaplay完成签到 ,获得积分0
46秒前
股价发布了新的文献求助10
53秒前
迈克老狼完成签到 ,获得积分10
56秒前
动人的又菡应助股价采纳,获得10
1分钟前
AmyHu完成签到,获得积分10
1分钟前
伊莎贝儿完成签到 ,获得积分10
1分钟前
浪麻麻完成签到 ,获得积分10
1分钟前
张琦完成签到 ,获得积分10
1分钟前
unowhoiam完成签到 ,获得积分10
1分钟前
充电宝应助DZT采纳,获得10
1分钟前
Servant2023完成签到,获得积分10
1分钟前
1分钟前
Skywings完成签到,获得积分10
1分钟前
DZT发布了新的文献求助10
1分钟前
FashionBoy应助Skywings采纳,获得30
1分钟前
范白容完成签到 ,获得积分0
1分钟前
KX2024完成签到,获得积分10
1分钟前
磨刀霍霍阿里嘎多完成签到 ,获得积分10
1分钟前
岳小龙完成签到 ,获得积分10
1分钟前
ipcy完成签到 ,获得积分10
1分钟前
完美世界应助高工采纳,获得10
1分钟前
安子完成签到 ,获得积分10
2分钟前
现实的大白完成签到 ,获得积分10
2分钟前
2分钟前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965729
求助须知:如何正确求助?哪些是违规求助? 3510977
关于积分的说明 11155814
捐赠科研通 3245466
什么是DOI,文献DOI怎么找? 1792981
邀请新用户注册赠送积分活动 874201
科研通“疑难数据库(出版商)”最低求助积分说明 804247