Ultrasensitive Online NO Sensor Based on a Distributed Parallel Self-Regulating Neural Network and Ultraviolet Differential Optical Absorption Spectroscopy for Exhaled Breath Diagnosis

呼出气一氧化氮 吸收(声学) 光谱学 生物系统 吸收光谱法 特征(语言学) 材料科学 计算机科学 差分吸收光谱 化学 光电子学 光学 物理 气道 量子力学 语言学 哲学 气象学 支气管收缩 生物
作者
Rui Zhu,Jie Gao,Mu Li,Yongqi Wu,Qiang Gao,Xijun Wu,Yungang Zhang
出处
期刊:ACS Sensors [American Chemical Society]
卷期号:9 (3): 1499-1507 被引量:4
标识
DOI:10.1021/acssensors.3c02625
摘要

The concentration of fractional exhaled nitric oxide (FeNO) is closely related to human respiratory inflammation, and the detection of its concentration plays a key role in aiding diagnosing inflammatory airway diseases. In this paper, we report a gas sensor system based on a distributed parallel self-regulating neural network (DPSRNN) model combined with ultraviolet differential optical absorption spectroscopy for detecting ppb-level FeNO concentrations. The noise signals in the spectrum are eliminated by discrete wavelet transform. The DPSRNN model is then built based on the separated multipeak characteristic absorption structure of the UV absorption spectrum of NO. Furthermore, a distributed parallel network structure is built based on each absorption feature region, which is given self-regulating weights and finally trained by a unified model structure. The final self-regulating weights obtained by the model indicate that each absorption feature region contributes a different weight to the concentration prediction. Compared with the regular convolutional neural network model structure, the proposed model has better performance by considering the effect of separated characteristic absorptions in the spectrum on the concentration and breaking the habit of bringing the spectrum as a whole into the model training in previous related studies. Lab-based results show that the sensor system can stably achieve high-precision detection of NO (2.59–750.66 ppb) with a mean absolute error of 0.17 ppb and a measurement accuracy of 0.84%, which is the best result to date. More interestingly, the proposed sensor system is capable of achieving high-precision online detection of FeNO, as confirmed by the exhaled breath analysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
落日游云完成签到,获得积分20
2秒前
3秒前
Mint发布了新的文献求助10
3秒前
Frida发布了新的文献求助10
3秒前
3秒前
万能图书馆应助泡面采纳,获得10
6秒前
小鱼发布了新的文献求助10
7秒前
8秒前
殷勤的豆芽完成签到,获得积分10
8秒前
9秒前
11秒前
浮游呦呦完成签到,获得积分10
11秒前
erkin发布了新的文献求助30
12秒前
彭于彦祖应助欢喜梦凡采纳,获得20
14秒前
123发布了新的文献求助10
14秒前
文静的代灵完成签到 ,获得积分10
16秒前
卡卡完成签到,获得积分10
16秒前
SciGPT应助xuhaohao采纳,获得30
17秒前
英俊丹秋完成签到,获得积分10
17秒前
19秒前
ww完成签到,获得积分10
20秒前
Cccc小懒完成签到,获得积分10
21秒前
dyk完成签到,获得积分10
21秒前
爱静静应助卡卡采纳,获得10
22秒前
务实的达关注了科研通微信公众号
23秒前
小蘑菇应助斯文明杰采纳,获得10
24秒前
25秒前
25秒前
科研通AI2S应助叙温雨采纳,获得10
25秒前
26秒前
无花果应助暴力比巴波采纳,获得10
27秒前
27秒前
29秒前
郑志凡完成签到 ,获得积分10
30秒前
31秒前
xuhaohao发布了新的文献求助30
32秒前
33秒前
Orange应助小鱼采纳,获得10
33秒前
35秒前
共享精神应助杨洪江采纳,获得10
36秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3149289
求助须知:如何正确求助?哪些是违规求助? 2800391
关于积分的说明 7839862
捐赠科研通 2457980
什么是DOI,文献DOI怎么找? 1308158
科研通“疑难数据库(出版商)”最低求助积分说明 628456
版权声明 601706