A deep neural network predictor to predict the sensitivity of neoadjuvant chemoradiotherapy in locally advanced rectal cancer

结直肠癌 放化疗 医学 肿瘤科 内科学 灵敏度(控制系统) 新辅助治疗 癌症 电子工程 乳腺癌 工程类
作者
Yuhao Liu,Jinming Shi,Wenyang Liu,Yuan Tang,Xingmei Shu,Ranjiaxi Wang,Yinan Chen,Xiaoqian Shi,Jing Jin,Dan Li
出处
期刊:Cancer Letters [Elsevier]
卷期号:589: 216641-216641 被引量:5
标识
DOI:10.1016/j.canlet.2024.216641
摘要

Neoadjuvant chemoradiotherapy (NCRT) is widely used for locally advanced rectal cancer (LARC). This study aimed to conduct an effective model to predict NCRT sensitivity and provide guidance for clinical treatment. Biomarkers for NCRT sensitivity were identified by applying transcriptome profiles using logistic regression and subsequently screened out by Spearman correlation analysis and four machine learning algorithms. A deep neural network (DNN) predictor was constructed by using in-house dataset and validate in two independent datasets. Additionally, a web-based program was developed. WNT/β-catenin signaling (WNT) and linoleic acid metabolism (LA) pathways were associated with NCRT sensitivity and prognosis in LARC, antagonistically. A DNN predictor with an 18-gene signature was conducted within in-house datasets. In two validation cohorts, area under ROC curve (AUC) achieved 0.706 and 0.897. The DNN subtypes were significantly associated with NCRT sensitivity, survival status et al. Moreover, NK and cytotoxic T cells were observed contribution to NCRT sensitivity while regulatory T, myeloid-derived suppressor cells and dysfunction of CD4 T effector memory cells could impede NCRT response. A DNN predictor could predict NCRT sensitivity in LARC and stratify LARC patients with different clinical and immunity characteristic.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
甜甜的平蓝完成签到,获得积分10
3秒前
4秒前
4秒前
潇洒飞丹完成签到,获得积分10
5秒前
7秒前
8秒前
8秒前
Baywreath完成签到,获得积分10
9秒前
竹筏过海应助Lei采纳,获得30
9秒前
马皓发布了新的文献求助10
9秒前
10秒前
田字格发布了新的文献求助10
11秒前
北极星发布了新的文献求助10
12秒前
13秒前
南原给南原的求助进行了留言
13秒前
14秒前
Wenjian7761完成签到,获得积分10
14秒前
缪缪发布了新的文献求助10
16秒前
老实的石头完成签到,获得积分10
16秒前
小吴同学发布了新的文献求助10
17秒前
17秒前
量子星尘发布了新的文献求助10
19秒前
腼腆的若雁完成签到,获得积分10
20秒前
20秒前
fuiee发布了新的文献求助10
20秒前
小开心完成签到,获得积分10
20秒前
北极星完成签到,获得积分10
21秒前
cccc完成签到 ,获得积分10
21秒前
22秒前
Dogged完成签到 ,获得积分10
23秒前
耶啵耶啵完成签到 ,获得积分10
24秒前
mentality完成签到,获得积分10
24秒前
24秒前
24秒前
25秒前
25秒前
VDC应助机智寻雪采纳,获得30
25秒前
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 6000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
The Political Psychology of Citizens in Rising China 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5637867
求助须知:如何正确求助?哪些是违规求助? 4744182
关于积分的说明 15000410
捐赠科研通 4796064
什么是DOI,文献DOI怎么找? 2562285
邀请新用户注册赠送积分活动 1521829
关于科研通互助平台的介绍 1481714