A deep neural network predictor to predict the sensitivity of neoadjuvant chemoradiotherapy in locally advanced rectal cancer

结直肠癌 放化疗 医学 肿瘤科 内科学 灵敏度(控制系统) 新辅助治疗 癌症 电子工程 乳腺癌 工程类
作者
Yuhao Liu,Jinming Shi,Wenyang Liu,Yuan Tang,Xingmei Shu,Ranjiaxi Wang,Yinan Chen,Xiaoqian Shi,Jing Jin,Dan Li
出处
期刊:Cancer Letters [Elsevier]
卷期号:589: 216641-216641 被引量:5
标识
DOI:10.1016/j.canlet.2024.216641
摘要

Neoadjuvant chemoradiotherapy (NCRT) is widely used for locally advanced rectal cancer (LARC). This study aimed to conduct an effective model to predict NCRT sensitivity and provide guidance for clinical treatment. Biomarkers for NCRT sensitivity were identified by applying transcriptome profiles using logistic regression and subsequently screened out by Spearman correlation analysis and four machine learning algorithms. A deep neural network (DNN) predictor was constructed by using in-house dataset and validate in two independent datasets. Additionally, a web-based program was developed. WNT/β-catenin signaling (WNT) and linoleic acid metabolism (LA) pathways were associated with NCRT sensitivity and prognosis in LARC, antagonistically. A DNN predictor with an 18-gene signature was conducted within in-house datasets. In two validation cohorts, area under ROC curve (AUC) achieved 0.706 and 0.897. The DNN subtypes were significantly associated with NCRT sensitivity, survival status et al. Moreover, NK and cytotoxic T cells were observed contribution to NCRT sensitivity while regulatory T, myeloid-derived suppressor cells and dysfunction of CD4 T effector memory cells could impede NCRT response. A DNN predictor could predict NCRT sensitivity in LARC and stratify LARC patients with different clinical and immunity characteristic.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
星辰大海应助whynot采纳,获得10
刚刚
1秒前
CipherSage应助lzl17o8采纳,获得10
1秒前
1秒前
2秒前
2秒前
Akim应助小郭采纳,获得10
3秒前
七濑发布了新的文献求助10
3秒前
ybyb678发布了新的文献求助30
4秒前
JL发布了新的文献求助10
6秒前
量子星尘发布了新的文献求助10
6秒前
Azure完成签到 ,获得积分10
7秒前
tzy发布了新的文献求助10
7秒前
乐乐应助yoyo112233采纳,获得10
8秒前
bkagyin应助优美的南烟采纳,获得10
8秒前
大个应助潇潇雨歇采纳,获得10
9秒前
10秒前
10秒前
10秒前
xiliyusheng完成签到,获得积分10
12秒前
一颗橙子发布了新的文献求助10
12秒前
13秒前
GD完成签到,获得积分10
14秒前
yoyo112233发布了新的文献求助10
15秒前
掐钰完成签到,获得积分10
15秒前
怡然诗霜发布了新的文献求助10
16秒前
16秒前
奎奎完成签到 ,获得积分10
17秒前
xiliyusheng发布了新的文献求助10
17秒前
18秒前
19秒前
火星上安筠完成签到,获得积分10
21秒前
21秒前
22秒前
ayintree发布了新的文献求助10
22秒前
水水的发布了新的文献求助10
22秒前
lzl17o8发布了新的文献求助10
22秒前
yoyo112233发布了新的文献求助10
25秒前
whynot发布了新的文献求助10
26秒前
27秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Video: Lagrangian coherent structures in the flow field of a fluidic oscillator 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
Teaching Language in Context (Third Edition) 1000
List of 1,091 Public Pension Profiles by Region 961
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5449271
求助须知:如何正确求助?哪些是违规求助? 4557461
关于积分的说明 14263571
捐赠科研通 4480503
什么是DOI,文献DOI怎么找? 2454464
邀请新用户注册赠送积分活动 1445194
关于科研通互助平台的介绍 1420969