A deep neural network predictor to predict the sensitivity of neoadjuvant chemoradiotherapy in locally advanced rectal cancer

结直肠癌 放化疗 医学 肿瘤科 内科学 灵敏度(控制系统) 新辅助治疗 癌症 电子工程 乳腺癌 工程类
作者
Yuhao Liu,Jinming Shi,Wenyang Liu,Yuan Tang,Xingmei Shu,Ranjiaxi Wang,Yinan Chen,Xiaoqian Shi,Jing Jin,Dan Li
出处
期刊:Cancer Letters [Elsevier BV]
卷期号:589: 216641-216641 被引量:5
标识
DOI:10.1016/j.canlet.2024.216641
摘要

Neoadjuvant chemoradiotherapy (NCRT) is widely used for locally advanced rectal cancer (LARC). This study aimed to conduct an effective model to predict NCRT sensitivity and provide guidance for clinical treatment. Biomarkers for NCRT sensitivity were identified by applying transcriptome profiles using logistic regression and subsequently screened out by Spearman correlation analysis and four machine learning algorithms. A deep neural network (DNN) predictor was constructed by using in-house dataset and validate in two independent datasets. Additionally, a web-based program was developed. WNT/β-catenin signaling (WNT) and linoleic acid metabolism (LA) pathways were associated with NCRT sensitivity and prognosis in LARC, antagonistically. A DNN predictor with an 18-gene signature was conducted within in-house datasets. In two validation cohorts, area under ROC curve (AUC) achieved 0.706 and 0.897. The DNN subtypes were significantly associated with NCRT sensitivity, survival status et al. Moreover, NK and cytotoxic T cells were observed contribution to NCRT sensitivity while regulatory T, myeloid-derived suppressor cells and dysfunction of CD4 T effector memory cells could impede NCRT response. A DNN predictor could predict NCRT sensitivity in LARC and stratify LARC patients with different clinical and immunity characteristic.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
好运连连发布了新的文献求助10
刚刚
晚霞不晚发布了新的文献求助10
刚刚
刚刚
斯文败类应助健康的妙菱采纳,获得10
刚刚
向颜静完成签到,获得积分10
1秒前
1秒前
苯环羟基发布了新的文献求助10
1秒前
科研通AI6应助hongdongxiang采纳,获得30
1秒前
量子星尘发布了新的文献求助10
1秒前
2秒前
2秒前
万信心发布了新的文献求助10
2秒前
英吉利25发布了新的文献求助10
3秒前
3秒前
orixero应助qianer采纳,获得10
3秒前
道中道发布了新的文献求助10
4秒前
4秒前
向颜静发布了新的文献求助10
4秒前
情怀应助洁净的士晋采纳,获得10
4秒前
orixero应助管歌采纳,获得10
4秒前
包包琪发布了新的文献求助10
4秒前
领导范儿应助刘厚麟采纳,获得10
5秒前
卜卜完成签到,获得积分10
5秒前
Orange应助yck1027采纳,获得10
5秒前
5秒前
5秒前
小二郎应助Xuan采纳,获得10
5秒前
于生有你完成签到,获得积分10
6秒前
脑洞疼应助xmf采纳,获得10
6秒前
6秒前
6秒前
科目三应助以马为梦采纳,获得10
7秒前
不会飞的超人完成签到,获得积分20
7秒前
李健应助yatou5651采纳,获得10
7秒前
7秒前
从容追命完成签到,获得积分20
7秒前
7秒前
7秒前
传奇3应助Wang采纳,获得200
8秒前
高分求助中
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
Stackable Smart Footwear Rack Using Infrared Sensor 300
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4603996
求助须知:如何正确求助?哪些是违规求助? 4012488
关于积分的说明 12423933
捐赠科研通 3693069
什么是DOI,文献DOI怎么找? 2036050
邀请新用户注册赠送积分活动 1069178
科研通“疑难数据库(出版商)”最低求助积分说明 953646