A dynamic parameter identification method for the 5-DOF hybrid robot based on sensitivity analysis

灵敏度(控制系统) Sobol序列 鉴定(生物学) 计算机科学 趋同(经济学) 控制理论(社会学) 系统标识 算法 工程类 人工智能 数据挖掘 电子工程 经济增长 植物 生物 经济 控制(管理) 度量(数据仓库)
作者
Zaihua Luo,Juliang Xiao,Sijiang Liu,Mingli Wang,Wei Zhao,Haitao Liu
出处
期刊:Industrial Robot-an International Journal [Emerald (MCB UP)]
卷期号:51 (2): 340-357 被引量:2
标识
DOI:10.1108/ir-08-2023-0178
摘要

Purpose This paper aims to propose a dynamic parameter identification method based on sensitivity analysis for the 5-degree of freedom (DOF) hybrid robots, to solve the problems of too many identification parameters, complex model, difficult convergence of optimization algorithms and easy-to-fall into a locally optimal solution, and improve the efficiency and accuracy of dynamic parameter identification. Design/methodology/approach First, the dynamic parameter identification model of the 5-DOF hybrid robot was established based on the principle of virtual work. Then, the sensitivity of the parameters to be identified is analyzed by Sobol’s sensitivity method and verified by simulation. Finally, an identification strategy based on sensitivity analysis was designed, experiments were carried out on the real robot and the results were verified. Findings Compared with the traditional full-parameter identification method, the dynamic parameter identification method based on sensitivity analysis proposed in this paper converges faster when optimized using the genetic algorithm, and the identified dynamic model has higher prediction accuracy for joint drive forces and torques than the full-parameter identification models. Originality/value This work analyzes the sensitivity of the parameters to be identified in the dynamic parameter identification model for the first time. Then a parameter identification method is proposed based on the results of the sensitivity analysis, which can effectively reduce the parameters to be identified, simplify the identification model, accelerate the convergence of the optimization algorithm and improve the prediction accuracy of the identified model for the joint driving forces and torques.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
又声完成签到,获得积分10
刚刚
恶毒的婆婆完成签到,获得积分10
刚刚
seesun发布了新的文献求助10
1秒前
小五完成签到 ,获得积分10
1秒前
Lengbo完成签到,获得积分10
2秒前
华仔应助chigga采纳,获得10
2秒前
2秒前
小马甲应助qq采纳,获得10
3秒前
272668789完成签到,获得积分10
3秒前
3秒前
3秒前
穿皮衣骑电动车完成签到,获得积分10
3秒前
4秒前
bo完成签到 ,获得积分10
4秒前
Lucas应助机智皮卡丘采纳,获得10
4秒前
miemie66发布了新的文献求助10
5秒前
moonlight完成签到,获得积分10
5秒前
5秒前
BowieHuang应助麦候采纳,获得10
5秒前
5秒前
坦率白竹完成签到,获得积分10
6秒前
行云流水发布了新的文献求助10
6秒前
6秒前
nihao完成签到,获得积分10
6秒前
娜娜完成签到,获得积分10
6秒前
Ayaka完成签到,获得积分10
6秒前
顾公子完成签到,获得积分10
6秒前
文文完成签到,获得积分10
7秒前
CR完成签到,获得积分10
8秒前
温柔的依珊完成签到,获得积分20
8秒前
蓝月半完成签到,获得积分10
8秒前
不安枕头完成签到 ,获得积分10
8秒前
kkfly完成签到,获得积分10
8秒前
9秒前
9秒前
樂樂发布了新的文献求助10
9秒前
周维完成签到,获得积分10
9秒前
Selenaxue完成签到,获得积分10
10秒前
共享精神应助无限聋五采纳,获得10
10秒前
LY发布了新的文献求助10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
从k到英国情人 1700
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5773892
求助须知:如何正确求助?哪些是违规求助? 5614543
关于积分的说明 15433335
捐赠科研通 4906309
什么是DOI,文献DOI怎么找? 2640191
邀请新用户注册赠送积分活动 1588031
关于科研通互助平台的介绍 1543027