A dynamic parameter identification method for the 5-DOF hybrid robot based on sensitivity analysis

灵敏度(控制系统) Sobol序列 鉴定(生物学) 计算机科学 趋同(经济学) 控制理论(社会学) 系统标识 算法 工程类 人工智能 数据挖掘 电子工程 经济增长 植物 生物 经济 控制(管理) 度量(数据仓库)
作者
Zaihua Luo,Juliang Xiao,Sijiang Liu,Mingli Wang,Wei Zhao,Haitao Liu
出处
期刊:Industrial Robot-an International Journal [Emerald Publishing Limited]
卷期号:51 (2): 340-357 被引量:2
标识
DOI:10.1108/ir-08-2023-0178
摘要

Purpose This paper aims to propose a dynamic parameter identification method based on sensitivity analysis for the 5-degree of freedom (DOF) hybrid robots, to solve the problems of too many identification parameters, complex model, difficult convergence of optimization algorithms and easy-to-fall into a locally optimal solution, and improve the efficiency and accuracy of dynamic parameter identification. Design/methodology/approach First, the dynamic parameter identification model of the 5-DOF hybrid robot was established based on the principle of virtual work. Then, the sensitivity of the parameters to be identified is analyzed by Sobol’s sensitivity method and verified by simulation. Finally, an identification strategy based on sensitivity analysis was designed, experiments were carried out on the real robot and the results were verified. Findings Compared with the traditional full-parameter identification method, the dynamic parameter identification method based on sensitivity analysis proposed in this paper converges faster when optimized using the genetic algorithm, and the identified dynamic model has higher prediction accuracy for joint drive forces and torques than the full-parameter identification models. Originality/value This work analyzes the sensitivity of the parameters to be identified in the dynamic parameter identification model for the first time. Then a parameter identification method is proposed based on the results of the sensitivity analysis, which can effectively reduce the parameters to be identified, simplify the identification model, accelerate the convergence of the optimization algorithm and improve the prediction accuracy of the identified model for the joint driving forces and torques.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
春风十里发布了新的文献求助10
刚刚
刚刚
yannnn完成签到,获得积分10
刚刚
dadii发布了新的文献求助10
1秒前
可达鸭应助stop here采纳,获得10
1秒前
疯狂的冬瓜完成签到,获得积分10
1秒前
fyyldragon完成签到,获得积分10
2秒前
nebula应助昏睡的蟠桃采纳,获得10
2秒前
yaw发布了新的文献求助10
3秒前
博博儿完成签到 ,获得积分10
3秒前
钩子89发布了新的文献求助10
4秒前
万能图书馆应助Emma采纳,获得10
4秒前
豆豆小baby完成签到,获得积分10
4秒前
jiao发布了新的文献求助10
5秒前
公交卡完成签到,获得积分10
5秒前
geopotter完成签到,获得积分10
5秒前
XIAOWANG完成签到,获得积分10
5秒前
Biyanchao发布了新的文献求助10
5秒前
Ade完成签到,获得积分10
5秒前
慕青应助啊薇儿采纳,获得10
6秒前
wen发布了新的文献求助10
6秒前
6秒前
7秒前
7秒前
ruanruan完成签到,获得积分10
7秒前
7秒前
thginK9z完成签到,获得积分10
8秒前
qiqiqiqiqi完成签到 ,获得积分10
9秒前
后知后觉完成签到,获得积分10
9秒前
情怀应助linmo采纳,获得10
9秒前
黄黄黄应助科研通管家采纳,获得10
10秒前
10秒前
10秒前
10秒前
10秒前
10秒前
10秒前
10秒前
10秒前
10秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Residual Stress Measurement by X-Ray Diffraction, 2003 Edition HS-784/2003 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3950817
求助须知:如何正确求助?哪些是违规求助? 3496247
关于积分的说明 11080980
捐赠科研通 3226673
什么是DOI,文献DOI怎么找? 1783954
邀请新用户注册赠送积分活动 867992
科研通“疑难数据库(出版商)”最低求助积分说明 800993