Electrooxidation of Perfluorocarboxylic Acids by an Interfacially Engineered Magnéli Phase Titanium Oxide (Ti4O7) Electrode with MXene

电极 相(物质) 氧化钛 材料科学 氧化物 无机化学 化学工程 化学 冶金 物理化学 有机化学 工程类
作者
Qingquan Ma,Jianan Gao,Kayla Cheng,Joshua Young,Meng‐Qiang Zhao,Avner Ronen,Wen Zhang
出处
期刊:ACS ES&T engineering [American Chemical Society]
卷期号:4 (5): 1102-1112
标识
DOI:10.1021/acsestengg.3c00571
摘要

Electrochemical advanced oxidative processes (EAOPs) offer promising pathways for the eradication of persistent organic pollutants, such as perfluoroalkanesulfonates (PFSAs) and perfluorocarboxylic acids (PFCAs). Herein, we demonstrated a hybrid electrocatalyst of Magnéli phase titanium oxide (Ti4O7)/Ti3C2Tx MXene for EAOP. The perfluorooctanoic acid (PFOA) degradation rate in batch tests by the Ti4O7/MXene electrode was 2.21 × 10–2 min–1, three times faster than that of the Ti4O7 electrode (0.76 × 10–2 min–1). This hybrid Ti4O7/MXene electrode significantly lowered the interfacial charge-transfer resistance from 54.36 to 7.18 Ω compared with the Ti4O7 electrode. The Ti4O7/MXene electrode also exhibits excellent stability as tested by 10 consecutive cycles for 30 h under a DC current of 10 mA·cm–2 and reached a stable PFAS degradation (98.1–9.2%). Some degradation isomers and intermediates with lower fluorinated chain lengths were detected. In addition, density functional theory (DFT) calculations indicate a greater charge transfer for PFOA and a lower adsorption energy for hydroxyl radicals (•OH) on Ti4O7/MXene in comparison with the pristine Ti4O7, which would facilitate the diffusion of radicals and oxidative reactions with PFCAs. A standardized electric energy consumption per log removal of PFCAs (EE/O) was found to be only 8–14 kWh m–3, which is among the lowest level of the current literature data. The integration of these hybrid nanomaterials brings forth a unique synergy that holds the capacity to drive enhanced catalytic activity, thereby contributing significantly to the field's pursuit of efficient pollutant removal and environmental remediation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大方嵩完成签到,获得积分10
刚刚
jihenyouai0213完成签到,获得积分10
1秒前
2秒前
3秒前
123完成签到,获得积分10
4秒前
星星发布了新的文献求助10
4秒前
共享精神应助woollen2022采纳,获得10
4秒前
5秒前
高源高源发布了新的文献求助10
6秒前
科研通AI2S应助姜姜采纳,获得10
6秒前
Singularity应助姜姜采纳,获得10
6秒前
syk应助姜姜采纳,获得10
6秒前
salt7发布了新的文献求助10
6秒前
明亮无颜发布了新的文献求助10
8秒前
lh完成签到,获得积分20
8秒前
9秒前
11秒前
高源高源完成签到,获得积分10
11秒前
科研八戒应助万莎莎采纳,获得10
12秒前
12秒前
桐桐应助维尼采纳,获得10
12秒前
kk关闭了kk文献求助
13秒前
14秒前
15秒前
bruce11发布了新的文献求助10
15秒前
眼睛大鹤发布了新的文献求助10
15秒前
小谢发布了新的文献求助10
16秒前
爆米花应助Yojane采纳,获得10
16秒前
迪鸣完成签到,获得积分10
16秒前
顾矜应助欢喜的火龙果采纳,获得10
17秒前
Ava应助niu采纳,获得10
17秒前
Renly发布了新的文献求助10
17秒前
witting发布了新的文献求助10
18秒前
JamesPei应助无限的元珊采纳,获得10
18秒前
慕青应助峰1992采纳,获得10
18秒前
西客发布了新的文献求助10
19秒前
汉堡包应助科研通管家采纳,获得10
22秒前
22秒前
香蕉觅云应助科研通管家采纳,获得10
22秒前
bkagyin应助科研通管家采纳,获得10
22秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
How Maoism Was Made: Reconstructing China, 1949-1965 800
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3310609
求助须知:如何正确求助?哪些是违规求助? 2943401
关于积分的说明 8514871
捐赠科研通 2618733
什么是DOI,文献DOI怎么找? 1431388
科研通“疑难数据库(出版商)”最低求助积分说明 664462
邀请新用户注册赠送积分活动 649626