Real-time rainfall and runoff prediction by integrating BC-MODWT and automatically-tuned DNNs: Comparing different deep learning models

地表径流 计算机科学 深度学习 环境科学 人工智能 生态学 生物
作者
Amirmasoud Amini,Mehri Dolatshahi,Reza Kerachian
出处
期刊:Journal of Hydrology [Elsevier BV]
卷期号:631: 130804-130804 被引量:14
标识
DOI:10.1016/j.jhydrol.2024.130804
摘要

The development of reliable rainfall and runoff prediction models holds significant importance in the domains of flood forecasting, early warning systems, and sustainable water resources planning and management. This research successfully enhances the accuracy of rainfall and runoff predictions by integrating the BC-MODWT (boundary-corrected maximal overlap discrete wavelet transform) preprocessing technique with various univariate and multivariate automatically tuned DNNs (deep neural networks). To do so, this research utilizes distinct Daubechies mother wavelets, namely db1, db2, and db3, at different levels of decomposition, to enhance the accuracy of rainfall and runoff prediction in an urban catchment with low time of concentration. The aforementioned framework is applied to the EDC (East Drainage Catchment) of Tehran city. Random search is used as an automatic hyperparameter tuning technique for univariate and multivariate DNNs. The results illustrate that the utilization of the BC-MODWT technique along with the automatically-tuned DNNs significantly improves the prediction performance compared to the automatically-tuned DNNs (i.e., increases NSE values from 0.54 to 0.97). Furthermore, the performance of top automatically-tuned BC-MODWT-DNNs is compared in terms of their accuracy in predicting rainfall hyetograph and peak flow. Therefore, it can be concluded that the automatically-tuned BC-MODWT-DNNs, especially univariate ConvLSTM and CNN-Bi-LSTM integrated with BC-MODWT, can be effectively used for rainfall and runoff prediction in urban areas with low time of concentration.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
mslln发布了新的文献求助10
刚刚
科研完成签到,获得积分20
1秒前
2秒前
PGZ完成签到,获得积分10
2秒前
醒醒完成签到,获得积分10
2秒前
赘婿应助ing采纳,获得10
3秒前
zhou完成签到,获得积分10
4秒前
量子星尘发布了新的文献求助10
4秒前
周晓发布了新的文献求助10
4秒前
beyond完成签到,获得积分10
5秒前
5秒前
做饭不咸完成签到,获得积分10
6秒前
无极微光应助木光采纳,获得20
6秒前
7秒前
www发布了新的文献求助10
7秒前
万能图书馆应助yanwowo采纳,获得10
7秒前
黄嘉慧完成签到 ,获得积分10
8秒前
想发一篇贾克斯完成签到,获得积分10
8秒前
9秒前
F_ken发布了新的文献求助10
9秒前
块块的加隆满口袋完成签到 ,获得积分10
10秒前
CT民工发布了新的文献求助10
10秒前
受伤冰菱完成签到,获得积分10
11秒前
lingyu完成签到,获得积分10
11秒前
12秒前
南絮发布了新的文献求助10
12秒前
ccc完成签到,获得积分10
12秒前
12秒前
12秒前
武工队队长石青山完成签到,获得积分10
12秒前
量子星尘发布了新的文献求助10
14秒前
14秒前
14秒前
14秒前
卷儿w发布了新的文献求助40
15秒前
陆程文发布了新的文献求助10
15秒前
MXG完成签到,获得积分10
15秒前
隐形曼青应助ornot君君采纳,获得10
16秒前
zhulinkin完成签到 ,获得积分10
16秒前
睡醒了发布了新的文献求助10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
Thomas Hobbes' Mechanical Conception of Nature 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5097313
求助须知:如何正确求助?哪些是违规求助? 4309783
关于积分的说明 13428428
捐赠科研通 4137300
什么是DOI,文献DOI怎么找? 2266533
邀请新用户注册赠送积分活动 1269654
关于科研通互助平台的介绍 1205978