Real-time rainfall and runoff prediction by integrating BC-MODWT and automatically-tuned DNNs: Comparing different deep learning models

地表径流 计算机科学 深度学习 环境科学 人工智能 生态学 生物
作者
Amirmasoud Amini,Mehri Dolatshahi,Reza Kerachian
出处
期刊:Journal of Hydrology [Elsevier]
卷期号:631: 130804-130804 被引量:14
标识
DOI:10.1016/j.jhydrol.2024.130804
摘要

The development of reliable rainfall and runoff prediction models holds significant importance in the domains of flood forecasting, early warning systems, and sustainable water resources planning and management. This research successfully enhances the accuracy of rainfall and runoff predictions by integrating the BC-MODWT (boundary-corrected maximal overlap discrete wavelet transform) preprocessing technique with various univariate and multivariate automatically tuned DNNs (deep neural networks). To do so, this research utilizes distinct Daubechies mother wavelets, namely db1, db2, and db3, at different levels of decomposition, to enhance the accuracy of rainfall and runoff prediction in an urban catchment with low time of concentration. The aforementioned framework is applied to the EDC (East Drainage Catchment) of Tehran city. Random search is used as an automatic hyperparameter tuning technique for univariate and multivariate DNNs. The results illustrate that the utilization of the BC-MODWT technique along with the automatically-tuned DNNs significantly improves the prediction performance compared to the automatically-tuned DNNs (i.e., increases NSE values from 0.54 to 0.97). Furthermore, the performance of top automatically-tuned BC-MODWT-DNNs is compared in terms of their accuracy in predicting rainfall hyetograph and peak flow. Therefore, it can be concluded that the automatically-tuned BC-MODWT-DNNs, especially univariate ConvLSTM and CNN-Bi-LSTM integrated with BC-MODWT, can be effectively used for rainfall and runoff prediction in urban areas with low time of concentration.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
深情安青应助nuannuan采纳,获得20
刚刚
呆萌冰绿完成签到,获得积分10
刚刚
李大园子完成签到 ,获得积分10
刚刚
刚刚
华枝春满完成签到,获得积分10
1秒前
wuqilong完成签到,获得积分10
2秒前
dreamlightzy应助qmd采纳,获得10
2秒前
NewMoon完成签到,获得积分10
2秒前
FashionBoy应助嘟嘟采纳,获得10
2秒前
洁净的127完成签到,获得积分10
3秒前
4秒前
4秒前
5秒前
2339822272发布了新的文献求助10
5秒前
星星完成签到,获得积分10
5秒前
幸运兔发布了新的文献求助10
6秒前
上官若男应助wqx采纳,获得10
6秒前
月亮邮递员完成签到,获得积分10
8秒前
222完成签到 ,获得积分10
8秒前
Likj完成签到,获得积分10
8秒前
量子星尘发布了新的文献求助10
10秒前
异氰酸正丙酯完成签到 ,获得积分10
10秒前
wsc发布了新的文献求助10
10秒前
幸运兔完成签到,获得积分10
11秒前
曾祥钰完成签到 ,获得积分10
12秒前
13秒前
13秒前
bkagyin应助XM采纳,获得10
13秒前
13秒前
芒果糯米球完成签到,获得积分10
15秒前
未来完成签到,获得积分10
17秒前
17秒前
nuonuo发布了新的文献求助10
17秒前
17秒前
橙子发布了新的文献求助30
17秒前
海洋发布了新的文献求助10
18秒前
万能图书馆应助黄123huang_采纳,获得10
18秒前
丘比特应助tengfei采纳,获得10
19秒前
Cody发布了新的文献求助10
19秒前
lamer完成签到 ,获得积分10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 851
The International Law of the Sea (fourth edition) 800
A Guide to Genetic Counseling, 3rd Edition 500
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5414973
求助须知:如何正确求助?哪些是违规求助? 4531742
关于积分的说明 14129928
捐赠科研通 4447167
什么是DOI,文献DOI怎么找? 2439607
邀请新用户注册赠送积分活动 1431721
关于科研通互助平台的介绍 1409333