Real-time rainfall and runoff prediction by integrating BC-MODWT and automatically-tuned DNNs: Comparing different deep learning models

地表径流 计算机科学 深度学习 环境科学 人工智能 生态学 生物
作者
Amirmasoud Amini,Mehri Dolatshahi,Reza Kerachian
出处
期刊:Journal of Hydrology [Elsevier]
卷期号:631: 130804-130804 被引量:14
标识
DOI:10.1016/j.jhydrol.2024.130804
摘要

The development of reliable rainfall and runoff prediction models holds significant importance in the domains of flood forecasting, early warning systems, and sustainable water resources planning and management. This research successfully enhances the accuracy of rainfall and runoff predictions by integrating the BC-MODWT (boundary-corrected maximal overlap discrete wavelet transform) preprocessing technique with various univariate and multivariate automatically tuned DNNs (deep neural networks). To do so, this research utilizes distinct Daubechies mother wavelets, namely db1, db2, and db3, at different levels of decomposition, to enhance the accuracy of rainfall and runoff prediction in an urban catchment with low time of concentration. The aforementioned framework is applied to the EDC (East Drainage Catchment) of Tehran city. Random search is used as an automatic hyperparameter tuning technique for univariate and multivariate DNNs. The results illustrate that the utilization of the BC-MODWT technique along with the automatically-tuned DNNs significantly improves the prediction performance compared to the automatically-tuned DNNs (i.e., increases NSE values from 0.54 to 0.97). Furthermore, the performance of top automatically-tuned BC-MODWT-DNNs is compared in terms of their accuracy in predicting rainfall hyetograph and peak flow. Therefore, it can be concluded that the automatically-tuned BC-MODWT-DNNs, especially univariate ConvLSTM and CNN-Bi-LSTM integrated with BC-MODWT, can be effectively used for rainfall and runoff prediction in urban areas with low time of concentration.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
dew应助麟心牧宇采纳,获得10
刚刚
1秒前
jackma2完成签到,获得积分10
1秒前
77发布了新的文献求助10
1秒前
1秒前
今后应助tt采纳,获得10
1秒前
周文凯发布了新的文献求助10
2秒前
趣多多发布了新的文献求助10
2秒前
八九完成签到,获得积分10
2秒前
zz完成签到 ,获得积分10
3秒前
科研通AI6.1应助张f采纳,获得10
3秒前
3秒前
4秒前
6秒前
Utopia1632完成签到,获得积分10
6秒前
7秒前
8秒前
8秒前
8秒前
HHHHTTTT发布了新的文献求助10
8秒前
8秒前
8秒前
温酒随行发布了新的文献求助10
9秒前
量子星尘发布了新的文献求助10
9秒前
YuZhang完成签到 ,获得积分10
10秒前
11秒前
11秒前
11秒前
13秒前
14秒前
陈倦完成签到 ,获得积分10
14秒前
15秒前
dew应助哈哈你长比我丑采纳,获得10
16秒前
sometimes完成签到,获得积分10
16秒前
16秒前
16秒前
17秒前
脑洞疼应助tt采纳,获得10
17秒前
18秒前
19秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5750082
求助须知:如何正确求助?哪些是违规求助? 5462045
关于积分的说明 15365483
捐赠科研通 4889284
什么是DOI,文献DOI怎么找? 2629034
邀请新用户注册赠送积分活动 1577326
关于科研通互助平台的介绍 1533933