清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Real-time rainfall and runoff prediction by integrating BC-MODWT and automatically-tuned DNNs: Comparing different deep learning models

地表径流 计算机科学 深度学习 环境科学 人工智能 生态学 生物
作者
Amirmasoud Amini,Mehri Dolatshahi,Reza Kerachian
出处
期刊:Journal of Hydrology [Elsevier]
卷期号:631: 130804-130804 被引量:14
标识
DOI:10.1016/j.jhydrol.2024.130804
摘要

The development of reliable rainfall and runoff prediction models holds significant importance in the domains of flood forecasting, early warning systems, and sustainable water resources planning and management. This research successfully enhances the accuracy of rainfall and runoff predictions by integrating the BC-MODWT (boundary-corrected maximal overlap discrete wavelet transform) preprocessing technique with various univariate and multivariate automatically tuned DNNs (deep neural networks). To do so, this research utilizes distinct Daubechies mother wavelets, namely db1, db2, and db3, at different levels of decomposition, to enhance the accuracy of rainfall and runoff prediction in an urban catchment with low time of concentration. The aforementioned framework is applied to the EDC (East Drainage Catchment) of Tehran city. Random search is used as an automatic hyperparameter tuning technique for univariate and multivariate DNNs. The results illustrate that the utilization of the BC-MODWT technique along with the automatically-tuned DNNs significantly improves the prediction performance compared to the automatically-tuned DNNs (i.e., increases NSE values from 0.54 to 0.97). Furthermore, the performance of top automatically-tuned BC-MODWT-DNNs is compared in terms of their accuracy in predicting rainfall hyetograph and peak flow. Therefore, it can be concluded that the automatically-tuned BC-MODWT-DNNs, especially univariate ConvLSTM and CNN-Bi-LSTM integrated with BC-MODWT, can be effectively used for rainfall and runoff prediction in urban areas with low time of concentration.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
15秒前
Leon发布了新的文献求助20
19秒前
20秒前
22秒前
Leon完成签到,获得积分10
30秒前
tingalan完成签到,获得积分0
30秒前
赵一完成签到 ,获得积分10
37秒前
49秒前
上官若男应助研友_拓跋戾采纳,获得10
54秒前
Thi发布了新的文献求助10
59秒前
无悔完成签到 ,获得积分0
1分钟前
笔墨纸砚完成签到 ,获得积分10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
Thi完成签到,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
吃饱再睡完成签到 ,获得积分10
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
酷酷的紫南完成签到 ,获得积分10
2分钟前
2分钟前
xue完成签到 ,获得积分10
2分钟前
冰凌心恋完成签到,获得积分10
2分钟前
2分钟前
www发布了新的文献求助10
2分钟前
hanlixuan完成签到 ,获得积分10
2分钟前
呆呆的猕猴桃完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
2分钟前
3分钟前
科研通AI6应助科研通管家采纳,获得10
3分钟前
wanci应助john2333采纳,获得10
3分钟前
奋斗的小研完成签到,获得积分10
3分钟前
3分钟前
Jin完成签到,获得积分10
3分钟前
jin完成签到,获得积分10
3分钟前
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5715179
求助须知:如何正确求助?哪些是违规求助? 5231114
关于积分的说明 15274068
捐赠科研通 4866203
什么是DOI,文献DOI怎么找? 2612756
邀请新用户注册赠送积分活动 1562941
关于科研通互助平台的介绍 1520304