亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Real-time rainfall and runoff prediction by integrating BC-MODWT and automatically-tuned DNNs: Comparing different deep learning models

地表径流 计算机科学 深度学习 环境科学 人工智能 生态学 生物
作者
Amirmasoud Amini,Mehri Dolatshahi,Reza Kerachian
出处
期刊:Journal of Hydrology [Elsevier]
卷期号:631: 130804-130804 被引量:14
标识
DOI:10.1016/j.jhydrol.2024.130804
摘要

The development of reliable rainfall and runoff prediction models holds significant importance in the domains of flood forecasting, early warning systems, and sustainable water resources planning and management. This research successfully enhances the accuracy of rainfall and runoff predictions by integrating the BC-MODWT (boundary-corrected maximal overlap discrete wavelet transform) preprocessing technique with various univariate and multivariate automatically tuned DNNs (deep neural networks). To do so, this research utilizes distinct Daubechies mother wavelets, namely db1, db2, and db3, at different levels of decomposition, to enhance the accuracy of rainfall and runoff prediction in an urban catchment with low time of concentration. The aforementioned framework is applied to the EDC (East Drainage Catchment) of Tehran city. Random search is used as an automatic hyperparameter tuning technique for univariate and multivariate DNNs. The results illustrate that the utilization of the BC-MODWT technique along with the automatically-tuned DNNs significantly improves the prediction performance compared to the automatically-tuned DNNs (i.e., increases NSE values from 0.54 to 0.97). Furthermore, the performance of top automatically-tuned BC-MODWT-DNNs is compared in terms of their accuracy in predicting rainfall hyetograph and peak flow. Therefore, it can be concluded that the automatically-tuned BC-MODWT-DNNs, especially univariate ConvLSTM and CNN-Bi-LSTM integrated with BC-MODWT, can be effectively used for rainfall and runoff prediction in urban areas with low time of concentration.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小二郎应助xiang采纳,获得10
刚刚
3秒前
冉亦完成签到,获得积分10
3秒前
卡卡东完成签到 ,获得积分10
15秒前
cao完成签到,获得积分10
15秒前
木棉完成签到,获得积分10
15秒前
hhh完成签到 ,获得积分10
17秒前
23秒前
FashionBoy应助我有一壶酒采纳,获得10
23秒前
Plikestudy发布了新的文献求助30
25秒前
科研通AI6.1应助Okanryo采纳,获得10
25秒前
27秒前
丸子完成签到 ,获得积分10
29秒前
31秒前
32秒前
33秒前
34秒前
量子星尘发布了新的文献求助10
35秒前
36秒前
科目三应助LY采纳,获得10
38秒前
38秒前
xiang发布了新的文献求助10
39秒前
yangzai完成签到 ,获得积分0
40秒前
alva发布了新的文献求助10
41秒前
katata完成签到 ,获得积分10
43秒前
45秒前
小蘑菇应助心灵美猎豹采纳,获得10
46秒前
AEGUO完成签到 ,获得积分10
49秒前
50秒前
50秒前
Criminology34应助后来采纳,获得10
50秒前
科研通AI6.1应助aaa采纳,获得10
52秒前
妖妖灵发布了新的文献求助10
56秒前
兜兜发布了新的文献求助10
56秒前
59秒前
桐桐应助小鱼采纳,获得10
1分钟前
田様应助我有一壶酒采纳,获得10
1分钟前
linyanling完成签到,获得积分20
1分钟前
医学僧也想成为科主任完成签到,获得积分20
1分钟前
栗子完成签到,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Electron Energy Loss Spectroscopy 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5779791
求助须知:如何正确求助?哪些是违规求助? 5649870
关于积分的说明 15452355
捐赠科研通 4910851
什么是DOI,文献DOI怎么找? 2642982
邀请新用户注册赠送积分活动 1590635
关于科研通互助平台的介绍 1545094