吸附
废水
煅烧
化学
朗缪尔
磷
朗缪尔吸附模型
核化学
碳酸钙
色谱法
环境工程
有机化学
环境科学
催化作用
作者
Andreia F. Santos,Daniela Lopes,Paula Alvarenga,Licínio M. Gando‐Ferreira,Margarida J. Quina
标识
DOI:10.1016/j.jenvman.2023.119875
摘要
Phosphorus (P) removal from urban wastewater is increasingly relevant in the wastewater treatment sector. The present work aims to contribute to the study of the adsorption process as a P removal technology. Biogenic calcium carbonate from industrial eggshell waste prepared by milling and calcination was used as an adsorbent. Batch adsorption experiments were conducted using real wastewater with 40 mg P/L (orthophosphate), original pH 7.33, under stirring conditions (100 rpm). The adsorbent was characterized using SEM-EDS, XRD, and FTIR-ATR before and after adsorption. From an initial screening of calcination times (15, 30, 60, and 120 min) and considering a balance between P removal and energy saving, the adsorbent selected was eggshell calcined at 700 °C for 60 min. The Langmuir isotherms describe the experimental data with a maximum adsorption capacity of 4.57 mg P/g at 25 °C. The adsorption process reached equilibrium within 120 min for different dosages (5, 10, and 20 g/L at 25 °C). Batch experiments showed that SO42−, at a concentration of 2689 mg/L reduced the P adsorption selectivity for dosages ≤10 g/L at 25 °C. Characterization of the loaded adsorbent shows that P adsorption from real wastewater is mostly electrostatic attraction, with the contribution of ligand exchange and microprecipitation. The adsorption capacity and behavior of the selected adsorbent seem promising for P removal from urban wastewater compared with other low-cost adsorbents.
科研通智能强力驱动
Strongly Powered by AbleSci AI