A novel evolutionary ensemble prediction model using harmony search and stacking for diabetes diagnosis

人工智能 计算机科学 和声搜索 机器学习 糖尿病 特征选择 水准点(测量) 医学 内分泌学 大地测量学 地理
作者
Zaiheng Zhang,Yanjie Lu,Mingtao Ye,Wanyu Huang,Lixu Jin,Guodao Zhang,Yisu Ge,Alireza Baghban,Qiwen Zhang,Haiou Wang,Wenzong Zhu
出处
期刊:Journal of King Saud University - Computer and Information Sciences [Elsevier BV]
卷期号:36 (1): 101873-101873
标识
DOI:10.1016/j.jksuci.2023.101873
摘要

Diabetes is a dreaded disease that can be identified by elevated blood glucose levels in the blood, and undiagnosed diabetes can cause a host of related complications, such as retinopathy and nephropathy. In terms of type, the main categories are type 1 diabetes (T1DM), type 2 diabetes (T2DM) and gestational diabetes mellitus (GDM). Machine learning models and metaheuristic optimization algorithms can play an important role in the early detection, diagnosis and treatment of this disease. To this end, we propose AHDHS-Stacking, an ensemble learning framework for diabetes mellitus classification and diagnosis that is based on the harmony search (HS) algorithm and stacking and includes two stages of feature selection and optimization of base-learner combinations. To improve the model's overall performance, the average performance of all base learners is used as the feature selection target, and an adaptive hyperparameter strategy is used to accelerate the iterative process. HS is then used to optimize to find the best combination of base learners, which improves model performance while reducing complexity. Following that, we conducted experiments on the Pima Indians Diabetes (PID) dataset and the Chinese and Western Medicine Diabetes (CWMD) dataset, achieving accuracy of 93.09%, precision of 93.22%, recall of 91.60% , F-mesure of 92.25%, and MCC of 84.79% on PID dataset, which is better than all benchmark models and validated the model's validity. CWMD dataset experimental results showed that AHDHS-Stacking screened for key features such as age, gender, urinary glucose, fasting glucose, BMI and cholesterol, and can be used as a practical and accurate method for early diabetes prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
犹豫的映菡完成签到,获得积分10
1秒前
xhd183发布了新的文献求助10
1秒前
ymj完成签到,获得积分10
2秒前
万能图书馆应助cumt采纳,获得10
2秒前
炙热夏瑶发布了新的文献求助10
3秒前
LiShan发布了新的文献求助30
3秒前
3秒前
4秒前
ZhangZaikuan完成签到,获得积分10
4秒前
lichengxun发布了新的文献求助10
4秒前
wow完成签到,获得积分20
6秒前
8秒前
小二郎应助小灰灰采纳,获得10
8秒前
Orange应助wang采纳,获得10
8秒前
10秒前
Change2024完成签到,获得积分10
10秒前
打打应助memo采纳,获得10
10秒前
10秒前
科研通AI5应助NMZK采纳,获得10
11秒前
11秒前
11秒前
12秒前
云ch发布了新的文献求助10
12秒前
obsession发布了新的文献求助10
13秒前
14秒前
小野完成签到,获得积分10
14秒前
土拨鼠发布了新的文献求助10
14秒前
14秒前
keyanfentouzhe完成签到,获得积分10
15秒前
15秒前
陶治完成签到,获得积分10
15秒前
英俊的铭应助小药师采纳,获得10
16秒前
李健应助hhhj采纳,获得10
17秒前
忧伤的井发布了新的文献求助10
17秒前
张岩2025完成签到,获得积分10
17秒前
wuaaaaa_L发布了新的文献求助10
17秒前
小景发布了新的文献求助10
18秒前
俊逸青筠发布了新的文献求助10
18秒前
科研通AI2S应助Betty采纳,获得10
19秒前
泯珉发布了新的文献求助10
20秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Encyclopedia of Geology (2nd Edition) 2000
CRC Handbook of Chemistry and Physics 104th edition 1000
Izeltabart tapatansine - AdisInsight 600
An International System for Human Cytogenomic Nomenclature (2024) 500
Introduction to Comparative Public Administration Administrative Systems and Reforms in Europe, Third Edition 3rd edition 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3765151
求助须知:如何正确求助?哪些是违规求助? 3309728
关于积分的说明 10151708
捐赠科研通 3024936
什么是DOI,文献DOI怎么找? 1660379
邀请新用户注册赠送积分活动 793232
科研通“疑难数据库(出版商)”最低求助积分说明 755467