铌酸锂
非线性光学
准相位匹配
二次谐波产生
量子光学
光电子学
相(物质)
半导体
物理
光学
能量转换效率
极化
光子
非线性系统
范德瓦尔斯力
自发参量下转换
材料科学
量子
量子力学
激光器
量子纠缠
铁电性
电介质
分子
作者
Chiara Trovatello,Carino Ferrante,Birui Yang,Josip Bajo,Benjamin Braun,Xinyi Xu,Zhi Hao Peng,Philipp K. Jenke,Andrew Ye,Jiwoong Park,Philip Walther,Lee A. Rozema,Cory R. Dean,Andrea Marini,Giulio Cerullo,P. James Schuck
出处
期刊:Cornell University - arXiv
日期:2023-01-01
标识
DOI:10.48550/arxiv.2312.05444
摘要
Nonlinear optics lies at the heart of classical and quantum light generation. The invention of periodic poling revolutionized nonlinear optics and its commercial applications by enabling robust quasi-phase-matching in crystals such as lithium niobate. However, reaching useful frequency conversion efficiencies requires macroscopic dimensions, limiting further technology development and integration. Here we realize a periodically poled van der Waals semiconductor (3R-MoS$_2$). Due to its exceptional nonlinearity, we achieve macroscopic frequency conversion efficiency over a microscopic thickness of only 1.2${\mu}$m, $10-100\times$ thinner than current systems with similar performances. Due to unique intrinsic cavity effects, the thickness-dependent quasi-phase-matched second harmonic signal surpasses the usual quadratic enhancement by $50\%$. Further, we report the broadband generation of photon pairs at telecom wavelengths via quasi-phase-matched spontaneous parametric down-conversion. This work opens the new and unexplored field of phase-matched nonlinear optics with microscopic van der Waals crystals, unlocking applications that require simple, ultra-compact technologies such as on-chip entangled photon-pair sources for integrated quantum circuitry and sensing.
科研通智能强力驱动
Strongly Powered by AbleSci AI