Vortex-Enhanced Microfluidic Chip for Efficient Mixing and Particle Capturing Combining Acoustics with Inertia

微流控 化学 涡流 混合(物理) 惯性 粒子(生态学) 机械 炸薯条 声学 经典力学 纳米技术 物理 电信 地质学 海洋学 量子力学 材料科学 计算机科学
作者
Yuwen Lu,Wei Tan,Shuoshuo Mu,Guangshan Zhu
出处
期刊:Analytical Chemistry [American Chemical Society]
标识
DOI:10.1021/acs.analchem.3c05291
摘要

Vortex-based microfluidics has received significant attention for its unique characteristics of high efficiency, flexible control, and label-free properties for the past decades. Herein, we present a vortex-based acousto-inertial chip that allows both fluid and particle manipulation within a significantly wider flow range and lower excitation voltage. Composed of contraction–expansion array structures and vibrating microstructures combined with bubbles and sharp edges, such a configuration results in more vigorous vortical fluid motions. The overall improvement in device performance comes from the synergistic effect of acoustics and inertia, as well as the positive feedback loop formed by vibrating bubbles and sharp edges. We characterize flow patterns in the microchannels by fluorescence particle tracer experiments and uncover single- and double-vortex modes over a range of sample flow rates and excitation voltages. On this basis, the ability of rapid and efficient sample homogenization up to a flow rate of 200 μL/min under an excitation voltage of 15 Vpp is verified by a two-fluid fluorescence mixing experiment. Moreover, the recirculation motion of particles in microvortices is investigated by using a high-speed imaging system. We also quantitatively measure the particle velocity variation on the trajectory and illustrate the capturing mechanism, which results from the interaction of the microvortices, particle dynamics, and composite microstructure perturbations. Further utilizing the shear forces derived by microvortices, our acousto-inertial chip is demonstrated to lysis red blood cells (RBCs) in a continuous, reagent-free manner. The high controllability and multifunction of this technology allow for the development of multistep miniaturized “lab-on-chip” analytical systems, which could significantly broaden the application of microvortex technology in biological, chemical, and clinical applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
马马马完成签到,获得积分10
刚刚
wnll完成签到,获得积分10
刚刚
雨洋完成签到,获得积分10
3秒前
wnll发布了新的文献求助10
4秒前
SciGPT应助科研通管家采纳,获得10
4秒前
4秒前
友好的未来完成签到,获得积分10
5秒前
Justtry完成签到,获得积分10
5秒前
8秒前
ZZ完成签到,获得积分10
9秒前
yuncong323完成签到,获得积分10
9秒前
道友等等我完成签到,获得积分0
9秒前
进击的研狗完成签到 ,获得积分10
9秒前
ri_290完成签到,获得积分10
10秒前
izumi发布了新的文献求助10
10秒前
李加威完成签到 ,获得积分10
10秒前
凡事发生必有利于我完成签到,获得积分10
11秒前
科研张完成签到 ,获得积分10
13秒前
gyy发布了新的文献求助10
13秒前
listener完成签到,获得积分10
14秒前
孤独雨梅完成签到,获得积分10
15秒前
一蓑烟雨任平生完成签到,获得积分10
15秒前
陈小马完成签到,获得积分10
16秒前
合适书芹完成签到,获得积分10
16秒前
pigeonKimi完成签到,获得积分0
17秒前
哈利波特完成签到,获得积分10
17秒前
圈圈完成签到,获得积分10
19秒前
吱吱吱完成签到 ,获得积分10
20秒前
想吃芝士焗饭完成签到 ,获得积分10
22秒前
drtianyunhong完成签到,获得积分10
23秒前
苏素完成签到,获得积分10
23秒前
潘道士完成签到 ,获得积分10
25秒前
Nari完成签到,获得积分10
25秒前
火星上莛完成签到 ,获得积分10
25秒前
LBW完成签到,获得积分10
28秒前
妮子拉完成签到,获得积分10
29秒前
搬砖完成签到,获得积分10
29秒前
杠赛来完成签到,获得积分10
30秒前
yiyi完成签到,获得积分10
31秒前
飘逸的山柏完成签到 ,获得积分10
31秒前
高分求助中
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
宽禁带半导体紫外光电探测器 388
Case Research: The Case Writing Process 300
Global Geological Record of Lake Basins 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3142849
求助须知:如何正确求助?哪些是违规求助? 2793786
关于积分的说明 7807358
捐赠科研通 2450052
什么是DOI,文献DOI怎么找? 1303590
科研通“疑难数据库(出版商)”最低求助积分说明 627016
版权声明 601350