法拉第效率
过电位
阳极
成核
锌
图层(电子)
电解质
涂层
化学
无机化学
水溶液
材料科学
纳米技术
化学工程
电化学
电极
冶金
有机化学
物理化学
工程类
作者
Miaojie Fang,Tao Yang,Ouwei Sheng,Tianyu Shen,Zihan Huang,Rongkun Zheng,Chaofeng Zhang,Jian Zhang,Xuefeng Zhang
标识
DOI:10.1016/j.jcis.2024.02.053
摘要
Although aqueous zinc ion batteries (AZIBs) have the merits of environmental friendliness, high safety and theoretical capacity, the slow kinetics associated with zinc deposition and unavoidable interfacial corrosion have seriously affected the commercialization of aqueous zinc ion batteries. In this work, an ingenious “trinity” design is proposed by applying a porous hydrophilic carbon-loaded iodine coating to the zinc metal surface (INBC@Zn), which simultaneously acts as an artificial protective layer, electrolyte additive and anode curvature regulator, so as to reduce the nucleation overpotential of Zn and promote the preferential deposition of (0 0 2) planes to some extent. With this synergistic effect, INBC@Zn exhibits high reversibility and strong side reaction inhibition. As a result, INBC@Zn shows high symmetric cycling stability up to 4500 h at 1 mA cm−2. An ultra-long cycle stability of 1500 cycles with high Coulombic efficiency (99.8 %) is achieved in the asymmetric cell. In addition, the INBC@Zn//NVO full cells exhibit impressive capacity retention (96 % after 1000 cycles at 3 A/g). Importantly, the designed pouch cell demonstrates stable performance and shows certain prospects for application. This work provides a facile and instructive approach toward the development of high-performance AZIBs.
科研通智能强力驱动
Strongly Powered by AbleSci AI